The Digital World of Cytogenetic and Cytogenomic Web Resources

  • Protocol
  • First Online:
Cancer Cytogenetics and Cytogenomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2825))

  • 128 Accesses

Abstract

The dynamic growth of technological capabilities at the cellular and molecular level has led to a rapid increase in the amount of data on the genes and genomes of organisms. In order to store, access, compare, validate, classify, and understand the massive data generated by different researchers, and to promote effective communication among research communities, various genome and cytogenetic online databases have been established. These data platforms/resources are essential not only for computational analyses and theoretical syntheses but also for hel** researchers select future research topics and prioritize molecular targets. Furthermore, they are valuable for identifying shared recurrent genomic patterns related to human diseases and for avoiding unnecessary duplications among different researchers. The website interface, menu, graphics, animations, text layout, and data from databases are displayed by a front end on the screen of a monitor or smartphone. A database front-end refers to the user interface or application that enables accessing tabular, structured, or raw data stored in the database. The Internet makes it possible to reach a greater number of users around the world and gives them quick access to information stored in databases. The number of ways of presenting this data by front-ends increases as well. This requires unifying the ways of operating and presenting information by front-ends and ensuring contextual switching between front-ends of different databases. This chapter aims to present selected cytogenetic and cytogenomic Internet resources in terms of obtaining the needed information and to indicate how to increase the efficiency of access to stored information. Through a brief introduction of these databases and by providing examples of their usage in cytogenetic analyses, we aim to bridge the gap between cytogenetics and molecular genomics by encouraging their utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 145.51
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 242.64
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heng HH, Stevens JB, Liu G et al (2006) Stochastic cancer progression driven by nonclonal chromosome aberrations. J Cell Physiol 208(2):461–472. https://doi.org/10.1002/jcp.20685

    Article  CAS  PubMed  Google Scholar 

  2. Heng HH (2015) Debating cancer: the paradox in cancer research. World Scientific Publishing Co., Singapore (World Scientific)

    Book  Google Scholar 

  3. Heng HH (2019) Genome chaos: rethinking genetics, evolution, and molecular medicine. Academic Press, San Diego

    Google Scholar 

  4. Heng HH (2007) Cancer genome sequencing: the challenges ahead. Bioessays 29(8):783–794. https://doi.org/10.1002/bies.20610

    Article  PubMed  Google Scholar 

  5. Kasperski A (2022) Life entrapped in a network of atavistic attractors: how to find a rescue. Int J Mol Sci 23:4017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Heng HH, Bremer SW, Stevens JB et al (2013) Chromosomal instability (CIN): what it is and why it is crucial to cancer evolution. Cancer Metastasis Rev 32(3–4):325–340. https://doi.org/10.1007/s10555-013-9427-7

    Article  PubMed  Google Scholar 

  7. Heng HH, Liu G, Stevens JB et al (2011) Decoding the genome beyond sequencing: the new phase of genomic research. Genomics 98(4):242–252. https://doi.org/10.1016/j.ygeno.2011.05.008

    Article  CAS  PubMed  Google Scholar 

  8. Kasperski A, Kasperska R (2018) Bioenergetics of life, disease and death phenomena. Theory Biosci 137:155–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kasperski A, Kasperska R (2013) Selected disease fundamentals based on the unified cell bioenergetics. J Investig Biochem 2:93–100

    Article  Google Scholar 

  10. Kasperski A (2008) Modelling of cells bioenergetics. Acta Biotheor 56:233–247

    Article  PubMed  Google Scholar 

  11. Ye CJ, Sharpe Z, Alemara S et al (2019) Micronuclei and genome chaos: changing the system inheritance. Genes (Basel) 10(5):366. https://doi.org/10.3390/genes10050366

    Article  CAS  PubMed  Google Scholar 

  12. Liu G, Stevens JB, Horne SD et al (2014) Genome chaos: survival strategy during crisis. Cell Cycle (Georgetown, Tex.) 13(4):528–537. https://doi.org/10.4161/cc.27378

    Article  CAS  PubMed  Google Scholar 

  13. Stevens JB, Liu G, Bremer SW et al (2007) Mitotic cell death by chromosome fragmentation. Cancer Res 67(16):7686–7694. https://doi.org/10.1158/0008-5472.CAN-07-0472

    Article  CAS  PubMed  Google Scholar 

  14. Weihua Z, Lin Q, Ramoth AJ et al (2011) Formation of solid tumors by a single multinucleated cancer cell. Cancer 117:4092–4099

    Article  PubMed  Google Scholar 

  15. Heng HH, Liu G, Stevens JB et al (2013) Karyotype heterogeneity and unclassified chromosomal abnormalities. Cytogenet Genome Res 139(3):144–157. https://doi.org/10.1159/000348682

    Article  CAS  PubMed  Google Scholar 

  16. Zhang S, Mercado-Uribe I, **ng Z et al (2014) Generation of cancer stem-like cells through the formation of polyploid giant cancer cells. Oncogene 33:116–128

    Article  CAS  PubMed  Google Scholar 

  17. Liu J (2022) Giant cells: linking McClintock’s heredity to early embryogenesis and tumor origin throughout millennia of evolution on earth. Semin Cancer Biol 81:176–192. https://doi.org/10.1016/j.semcancer.2021.06.007

    Article  CAS  PubMed  Google Scholar 

  18. Mirzayans R, Murray D (2023) Intratumor heterogeneity and treatment resistance of solid tumors with a focus on polyploid/senescent giant cancer cells (PGCCs). Int J Mol Sci 24(14):11534. https://doi.org/10.3390/ijms241411534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Erenpreisa J, Salmina K, Huna A et al (2015) The “virgin birth”, polyploidy, and the origin of cancer. Oncoscience 2:3–14

    Article  PubMed  Google Scholar 

  20. Li X, Zhong Y, Zhang X et al (2023) Spatiotemporal view of malignant histogenesis and macroevolution via formation of polyploid giant cancer cells. Oncogene 42(9):665–678. https://doi.org/10.1038/s41388-022-02588-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rancati G, Pavelka N, Fleharty B et al (2008) Aneuploidy underlies rapid adaptive evolution of yeast cells deprived of a conserved. Cell 135(5):879–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Duesberg P, McCormack A (2013) Immortality of cancers: a consequence of inherent karyotypic variations and selections for autonomy. Cell Cycle (Georgetown, Tex) 12(5):783–802. https://doi.org/10.4161/cc.23720

    Article  CAS  PubMed  Google Scholar 

  23. Duesberg P, Li R, Sachs R et al (2007) Cancer drug resistance: the central role of the karyotype. Drug Resist Updat 10(1–2):51–58. https://doi.org/10.1016/j.drup.2007.02.003

    Article  CAS  PubMed  Google Scholar 

  24. Stephens PJ, Greenman CD, Fu B et al (2011) Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144(1):27–40. https://doi.org/10.1016/j.cell.2010.11.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Baca SC, Prandi D, Lawrence MS et al (2013) Punctuated evolution of prostate cancer genomes. Cell 153(3):666–677. https://doi.org/10.1016/j.cell.2013.03.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pellestor F, Gatinois V (2020) Chromoanagenesis: a piece of the macroevolution scenario. Mol Cytogenet 13:3. https://doi.org/10.1186/s13039-020-0470-0

    Article  PubMed  PubMed Central  Google Scholar 

  27. Pellestor F, Gaillard JB, Schneider A et al (2022) Chromoanagenesis, the mechanisms of a genomic chaos. Semin Cell Dev Biol 123:90–99. https://doi.org/10.1016/j.semcdb.2021.01.004

    Article  CAS  PubMed  Google Scholar 

  28. Kasperski A, Kasperska R (2021) Study on attractors during organism evolution. Sci Rep 11:9637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kasperski A (2021) Genome attractors as places of evolution and oases of life. PRO 9:1646

    CAS  Google Scholar 

  30. Kasperski A, Heng HH (2023) Cancer formation as creation and penetration of unknown life spaces. In: Salgia R et al (eds) Cancer systems biology and translational mathematical oncology. Oxford University Press. (in press)

    Google Scholar 

  31. Heng J, Heng HH (2022) Genome chaos: creating new genomic information essential for cancer macroevolution. Semin Cancer Biol 81:160–175. https://doi.org/10.1016/j.semcancer.2020.11.003

    Article  CAS  PubMed  Google Scholar 

  32. Heng J, Heng HH (2021) Karyotype coding: the creation and maintenance of system information for complexity and biodiversity. Biosystems 208:104476. https://doi.org/10.1016/j.biosystems.2021.104476

    Article  PubMed  Google Scholar 

  33. Heng J, Heng HH (2023) Karyotype as code of codes: an inheritance platform to shape the pattern and scale of evolution. Biosystems 233:105016. https://doi.org/10.1016/j.biosystems.2023.105016. Epub 2023 Sep 1 PMID: 37659678

    Article  CAS  PubMed  Google Scholar 

  34. Ye CJ, Stilgenbauer L, Moy A et al (2019) What is karyotype coding and why is genomic topology important for cancer and evolution? Front Genet 10:1082. https://doi.org/10.3389/fgene.2019.01082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Heng HH (2009) The genome-centric concept: resynthesis of evolutionary theory. Bioessays 31(5):512–525. https://doi.org/10.1002/bies.200800182

    Article  PubMed  Google Scholar 

  36. Heng J, Heng HH (2021) Two-phased evolution: genome chaos-mediated information creation and maintenance. Prog Biophys Mol Biol 165:29–42. https://doi.org/10.1016/j.pbiomolbio.2021.04.003

    Article  CAS  PubMed  Google Scholar 

  37. Bernheim A, Huret JL, Guillaud-Bataille M et al (2004) [Cytogenetics, cytogenomics and cancer: 2004 update]. Bull Cancer. 91(1):29–43. French PMID: 14975803

    Google Scholar 

  38. Bernheim A (2002) Groupe Français de cytogénétique oncologique. Cytogénétique, cytogénomique et cancer [Cytogenetics, cytogenomics and cancer]. Bull Cancer 89(2):161–165. French PMID: 11888855

    PubMed  Google Scholar 

  39. Fonatsch C, Streubel B (1998) Classical and molecular cytogenetics. In: Huhn D (ed) New diagnostic methods in oncology and hematology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58803-7_4

    Chapter  Google Scholar 

  40. McGowan-Jordan J, Hastings RJ, Moore S (2020) An international system for cytogenomic nomenclature (2020) ISBN: 978-3-318-06706-4, e-ISBN: 978-3-318-06867-2. https://doi.org/10.1159/isbn.978-3-318-06867-2

  41. An International System for Human Cytogenetic Nomenclature (1978) Birth Defects: Oryginal Article Series, vol 14, No 8 (The National Fundation, New York 1978); also in Cytogenet Cell Genet 21:309–404

    Google Scholar 

  42. Mitelman F (1995) ISCN 1995: an international system for human cytogenetic nomenclature. S. Karger Publishers, Basel, Switzerland

    Google Scholar 

  43. Rigden DJ, Fernández XM (2023) The 2023 nucleic acids research database issue and the online molecular biology database collection. Nucleic Acids Res 51(D1):D1–D8. https://doi.org/10.1093/nar/gkac1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Heng HH, Regan SM, Liu G et al (2016) Why it is crucial to analyze non clonal chromosome aberrations or NCCAs? Mol Cytogenet 9:15. https://doi.org/10.1186/s13039-016-0223-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ye CJ, Regan S, Liu G (2018) Understanding aneuploidy in cancer through the lens of system inheritance, fuzzy inheritance and emergence of new genome systems. Mol Cytogenet 11:3. https://doi.org/10.1186/s13039-018-0376-2

    Article  CAS  Google Scholar 

  46. De Braekeleer E, Huret J, Mossafa H et al (2017) Cytogenetic resources and information. In: Wan T (ed) Cancer cytogenetics. Methods in molecular biology, vol 1541. Humana Press, New York. https://doi.org/10.1007/978-1-4939-6703-2_25

    Chapter  Google Scholar 

  47. Mitelman F (1983) Catalogue of chromosome aberrations in cancer. Cytogenet Cell Genet 36(1–2):1–515. https://doi.org/10.1159/000131930. PMID: 6627995

    Article  CAS  PubMed  Google Scholar 

  48. Mitelman F (1985) Catalog of chromosome aberrations in cancer, 2nd edn. Liss, New York, p 707. ISBN 0-8451-2405-6

    Google Scholar 

  49. Mitelman F (1988) Catalog of chromosome aberrations in cancer, 3rd edn. Liss, New York, p 1146. ISBN 0-8451-4248-8

    Google Scholar 

  50. Mitelman F (1991) Catalog of chromosome aberrations in cancer, 4th edn. Wiley-Liss, New York, p 1986. ISBN 0-471-56087-1

    Google Scholar 

  51. Mitelman F (1994) Catalog of chromosome aberrations in cancer, 5th edn. Wiley-Liss, New York, p 4252. ISBN 0-471-11183-X

    Google Scholar 

  52. Mitelman F (1998) Catalog of chromosome aberrations in cancer ’98, 6th edn. Wiley-Liss, New York. ISBN 0-471-17603-6

    Google Scholar 

  53. Mitelman F, Johansson B, Mertens F (eds) (2023) Mitelman database of chromosome aberrations and gene fusions in cancer. https://mitelmandatabase.isb-cgc.org

  54. Wang J, LaFramboise T (2019) CytoConverter: a web-based tool to convert karyotypes to genomic coordinates. BMC Bioinf 20:467. https://doi.org/10.1186/s12859-019-3062-4

    Article  CAS  Google Scholar 

  55. Reynolds SM, Miller M, Lee P (2017) The ISB cancer genomics cloud: a flexible cloud-based platform for cancer genomics research. Cancer Res 77(21):e7–e10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Huret JP, Ahmad M, Arsaban M et al (2013) Atlas of genetics and cytogenetics in oncology and haematology in 2013. Nucleic Acids Res 41(D1):D920–D924. https://doi.org/10.1093/nar/gks1082

    Article  CAS  PubMed  Google Scholar 

  57. Forbes SA, Bindal N, Bamford S et al (2011) COSMIC: mining complete cancer genomes in the catalogue of somatic mutations in cancer. Nucleic Acids Res 39:D945–D950

    Article  CAS  PubMed  Google Scholar 

  58. Tate J, Bamford S, Jubb HC et al (2019) COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res 47(D1):D941–D947. https://doi.org/10.1093/nar/gky1015

    Article  CAS  PubMed  Google Scholar 

  59. Clark K, Vendt B, Smith K et al (2013) The cancer imaging archive (TCIA): maintaining and operating a public information repository. J Digit Imaging 26:1045–1057. https://doi.org/10.1007/s10278-013-9622-7

    Article  PubMed  PubMed Central  Google Scholar 

  60. The Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human breast tumours. Nature 490:61–70. https://doi.org/10.1038/nature11412

    Article  CAS  PubMed Central  Google Scholar 

  61. Gerhard DS (2008) TCGA moving molecular oncology forward. NCI cancer Bulletin, Director’s Update National Cancer Institute. Retrieved 2009-08-27

    Google Scholar 

  62. Zanfardino M, Pane K, Mirabelli P et al (2019) TCGA-TCIA impact on Radiogenomics cancer research: a systematic review. Int J Mol Sci 20(23):6033. https://doi.org/10.3390/ijms20236033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cancer Genome Atlas Research Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 455(7216):1061–8. Epub 2008 Sep 4. Erratum in: Nature. 2013 Feb 28;494(7438):506. PMID: 18772890; PMCID: PMC2671642. https://doi.org/10.1038/nature07385

  64. Tomczak K, Czerwińska P, Wiznerowicz M (2015) The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol (Pozn). 19(1A):A68–77. PMID: 25691825; PMCID: PMC4322527. https://doi.org/10.5114/wo.2014.47136

  65. Nassar LR, Barber GP, Benet-Pagès A (2023) The UCSC genome browser database: 2023 update. Nucleic Acids Res 51(D1):D1188–D1195. PMID: 36420891; PMCID: PMC9825520. https://doi.org/10.1093/nar/gkac1072

    Article  CAS  PubMed  Google Scholar 

  66. Lee BT, Barber GP, Benet-Pagès A et al (2022) The UCSC genome browser database: 2022 update. Nucleic Acids Res 50(D1):D1115–D1122. PMID: 34718705; PMCID: PMC8728131. https://doi.org/10.1093/nar/gkab959

    Article  CAS  PubMed  Google Scholar 

  67. Tolomeo D, Stanyon RR, Rocchi M (2017) Fluorescence in situ hybridization probe preparation. In: Wan T (ed) Cancer cytogenetics. Methods in molecular biology, vol 1541. Humana Press, New York. https://doi.org/10.1007/978-1-4939-6703-2_9

    Chapter  Google Scholar 

  68. Klonowska K, Czubak K, Wojciechowska M et al (2016) Oncogenomic portals for the visualization and analysis of genome-wide cancer data. Oncotarget 7(1):176–192. PMID: 26484415; PMCID: PMC4807991. https://doi.org/10.18632/oncotarget.6128

    Article  PubMed  Google Scholar 

  69. Liehr T (2021) About classical molecular genetics, cytogenetic and molecular cytogenetic data not considered by Genome Reference Consortium and thus not included in genome browsers like UCSC, Ensembl or NCBI. Mol Cytogenet. 14(1):20. PMID: 33743766; PMCID: PMC7981792. https://doi.org/10.1186/s13039-021-00540-7

  70. Martínez-Jiménez F, Muiños F, Sentís I et al (2020) A compendium of mutational cancer driver genes. Nat Rev Cancer 20:555–572. https://doi.org/10.1038/s41568-020-0290-x

    Article  CAS  PubMed  Google Scholar 

  71. Moncunill V, Gonzalez S, Bea S et al (2014) Comprehensive characterization of complex structural variations in cancer by directly comparing genome sequence reads. Nat Biotechnol 32:1106–1112

    Article  CAS  PubMed  Google Scholar 

  72. Pickering CR, Zhou JH, Lee JJ et al (2014) Mutational landscape of aggressive cutaneous squamous cell carcinoma. Clin Cancer Res 20:6582–6592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang J, Baran J, Cros A et al (2011) International Cancer Genome Consortium Data Portal--a one-stop shop for cancer genomics data. Database (Oxford). 2011:bar026. https://doi.org/10.1093/database/bar026. PMID: 21930502; PMCID: PMC3263593

  74. Goldman MJ, Zhang J, Fonseca NA et al (2020) A user guide for the online exploration and visualization of PCAWG data. Nat Commun 11(1):3400. PMID: 32636365; PMCID: PMC7340791. https://doi.org/10.1038/s41467-020-16785-6

  75. Cerami E, Gao J, Dogrusoz U et al (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2(5):401–404. https://doi.org/10.1158/2159-8290.CD-12-0095

    Article  PubMed  Google Scholar 

  76. Gao J, Aksoy BA, Dogrusoz U et al (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6(269):pl1. https://doi.org/10.1126/scisignal.2004088. PMID: 23550210; PMCID: PMC4160307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Cunningham F, Allen JE, Allen J (2022) Ensembl 2022. Nucleic Acids Res 50(D1):D988–D995. PMID: 34791404; PMCID: PMC8728283. https://doi.org/10.1093/nar/gkab1049

    Article  CAS  PubMed  Google Scholar 

  78. Boutet E, Lieberherr D, Tognolli M et al (2016) UniProtKB/Swiss-Prot, the manually annotated section of the UniProt KnowledgeBase: how to use the entry view. Methods Mol Biol 1374:23–54. https://doi.org/10.1007/978-1-4939-3167-5_2. PMID: 26519399

    Article  CAS  PubMed  Google Scholar 

  79. Reynolds SM, Miller M, Lee P et al (2017) The ISB cancer genomics cloud: a flexible cloud-based platform for cancer genomics research. Cancer Research 77(21):e7–e10. American Association for Cancer Research Inc. https://doi.org/10.1158/0008-5472.CAN-17-0617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Liehr T (2023) Small supernumerary marker chromosomes. https://cs-tl.de/DB/CA/sSMC/0-Start.html (Accessed 01 April 2023)

  81. Szklarczyk D, Kirsch R, Koutrouli M et al (2023) The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res 51(D1):D638–D646. PMID: 36370105; PMCID: PMC9825434. https://doi.org/10.1093/nar/gkac1000

    Article  CAS  PubMed  Google Scholar 

  82. De Braekeleer E, Huret JL, Mossafa H et al (2017) Cytogenetic resources and information. Methods Mol Biol 1541:311–331. https://doi.org/10.1007/978-1-4939-6703-2_25. PMID: 27910033

    Article  CAS  PubMed  Google Scholar 

  83. MacDonald JR, Ziman R et al (2014) The database of genomic variants: a curated collection of structural variation in the human genome. Nucleic Acids Res 42(D1):D986–D992. https://doi.org/10.1093/nar/gkt958

    Article  CAS  PubMed  Google Scholar 

  84. Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V (2015) Skrzypek E PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res 43:D512–D520

    Article  CAS  PubMed  Google Scholar 

  85. Sigrist CJ, de Castro E, Cerutti L, Cuche BA, Hulo N, Bridge A, Bougueleret L, Xenarios I. New and continuing developments at PROSITE. Nucleic Acids Res. 2013;41(Database issue):D344–7. https://doi.org/10.1093/nar/gks1067. Epub 2012 Nov 17. PMID: 23161676; PMCID: PMC3531220

  86. Mitchell A, Chang HY, Daugherty L et al (2015) The InterPro protein families database: the classification resource after 15 years. Nucleic Acids Res 43(Database issue):D213–D221

    Article  PubMed  Google Scholar 

  87. Zelenova MA, Yurov YB, Vorsanova SG et al (2019) Laundering CNV data for candidate process prioritization in brain disorders. Mol Cytogenet 12:54. https://doi.org/10.1186/s13039-019-0468-7

    Article  PubMed  PubMed Central  Google Scholar 

  88. Murphy M, Brown G, Wallin C et al (2006) Gene help: integrated access to genes of genomes in the reference sequence collection. [Updated 2022 Nov 4]. In: Gene Help [internet]. National Center for Biotechnology Information (US), Bethesda (MD); 2005. Available from: https://www.ncbi.nlm.nih.gov/books/NBK3841/

    Google Scholar 

  89. Gillespie M, Jassal B, Stephan R (2021) The reactome pathway knowledgebase 2022. Nucleic Acids Res 2021:gkab1028. https://doi.org/10.1093/nar/gkab1028

    Article  CAS  Google Scholar 

  90. McLeod C, Gout AM, Zhou X et al (2021) A pediatric cancer genomic data-sharing ecosystem. Cancer Discov 11(5):1082–1099. Epub 2021 Jan 6. PMID: 33408242; PMCID: PMC8102307. https://doi.org/10.1158/2159-8290.CD-20-1230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Subramanian I, Verma S, Kumar S et al (2020) Multi-omics data integration, interpretation, and its application. Bioinform Biol Insights 14(14):1177932219899051. https://doi.org/10.1177/1177932219899051

    Article  PubMed  PubMed Central  Google Scholar 

  92. Benson DA, Cavanaugh M, Clark K et al (2012) GenBank. Nucleic Acids Res 41(Database issue):D36–D42. PMID: 23193287; PMCID: PMC3531190. https://doi.org/10.1093/nar/gks1195

    Article  PubMed  PubMed Central  Google Scholar 

  93. Wu C, ** X, Tsueng G et al (2015) BioGPS: building your own mash-up of gene annotations and expression profiles. Nucleic Acids Res 44(D1):D313–D316. Epub 2015 Nov 17. PMID: 26578587; PMCID: PMC4702805. https://doi.org/10.1093/nar/gkv1104

    Article  PubMed  PubMed Central  Google Scholar 

  94. Zahn-Zabal M, Michel PA, Gateau A et al (2020) The neXtProt knowledgebase in 2020: data, tools and usability improvements. Nucleic Acids Res 48(D1):D328–D334. https://doi.org/10.1093/nar/gkz995

    Article  CAS  PubMed  Google Scholar 

  95. Safran M, Rosen N, Twik M (2021) The GeneCards Suite. In: Abugessaisa I, Kasukawa T (eds) Practical guide to life science databases. Springer, Singapore. https://doi.org/10.1007/978-981-16-5812-9_2

    Chapter  Google Scholar 

  96. Kasperski A, Kasperska R (2016) A new approach to the automatic identification of organism evolution using neural networks. Biosystems 142–143:32–42

    Article  PubMed  Google Scholar 

  97. Kasperski A, Kasperska R (2014) Identification of protein family representatives. Curr Bioinforma 9:414–425

    Article  CAS  Google Scholar 

  98. Kasperski A, Kasperska R (2012) A novel method of sequence similarity evaluation in n-dimensional sequence space. Curr Bioinforma 7:295–303

    Article  CAS  Google Scholar 

  99. Iourov IY, Vorsanova SG, Yurov YB (2014) In silico molecular cytogenetics: a bioinformatic approach to prioritization of candidate genes and copy number variations for basic and clinical genome research. Mol Cytogenet 7:98. https://doi.org/10.1186/s13039-014-0098-z

    Article  PubMed  PubMed Central  Google Scholar 

  100. Dierssen M, Herault Y, Estivill X (2009) Aneuploidy: from a physiological mechanism of variance to Down syndrome. Physiol Rev 89:887–920

    Article  CAS  PubMed  Google Scholar 

  101. Kingsbury MA, Yung YC, Peterson SE et al (2006) Aneuploidy in the normal and diseased brain. Cell Mol Life Sci 63(22):2626–2641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Iourov IY, Vorsanova SG, Yurov YB (2006) Chromosomal variation in mammalian neuronal cells: known facts and attractive hypotheses. Int Rev Cytol 249:143–191

    Article  CAS  PubMed  Google Scholar 

  103. Weinstein JN, Collisson EA, Mills GB et al (2013) Cancer genome atlas research network. The cancer genome atlas pan-cancer analysis project. Nat Genet 45:1113–1120. https://doi.org/10.1038/ng.2764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Heng E, Thanedar S, Heng HH (2023) Challenges and opportunities for clinical cytogenetics in the 21st century. Genes 14:493. https://doi.org/10.3390/genes14020493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lepage CC, Thompson LL, Larson B et al (2020) An automated, single cell quantitative imaging microscopy approach to assess micronucleus formation, genotoxicity and chromosome instability. Cells 9(2):344. https://doi.org/10.3390/cells9020344. PMID: 32024251; PMCID: PMC7072510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhang X, Kschischo M (2022) Distinct and common features of numerical and structural chromosomal instability across different cancer types. Cancers 14:1424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ye JC, Horne S, Zhang JZ et al (2021) Therapy induced genome chaos: a novel mechanism of rapid cancer drug resistance. Front Cell Dev Biol 9:676344. https://doi.org/10.3389/fcell.2021.676344

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Kasperski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kasperski, A., Heng, H.H. (2024). The Digital World of Cytogenetic and Cytogenomic Web Resources. In: Ye, J.C., Heng, H.H. (eds) Cancer Cytogenetics and Cytogenomics. Methods in Molecular Biology, vol 2825. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3946-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3946-7_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3945-0

  • Online ISBN: 978-1-0716-3946-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation