Profiling Chromosome Topological Features by Super-Resolution 3D Structured Illumination Microscopy

  • Protocol
  • First Online:
Cancer Cytogenetics and Cytogenomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2825))

  • 150 Accesses

Abstract

Three-dimensional structured illumination microscopy (3D-SIM) and fluorescence in situ hybridization on three-dimensional preserved cells (3D-FISH) have proven to be robust and efficient methodologies for analyzing nuclear architecture and profiling the genome’s topological features. These methods have allowed the simultaneous visualization and evaluation of several target structures at super-resolution. In this chapter, we focus on the application of 3D-SIM for the visualization of 3D-FISH preparations of chromosomes in interphase, known as Chromosome Territories (CTs). We provide a workflow and detailed guidelines for sample preparation, image acquisition, and image analysis to obtain quantitative measurements for profiling chromosome topological features. In parallel, we address a practical example of these protocols in the profiling of CTs 9 and 22 involved in the translocation t(9;22) in Chronic Myeloid Leukemia (CML). The profiling of chromosome topological features described in this chapter allowed us to characterize a large-scale topological disruption of CTs 9 and 22 that correlates directly with patients’ response to treatment and as a possible potential change in the inheritance systems. These findings open new insights into how the genome structure is associated with the response to cancer treatments, highlighting the importance of microscopy in analyzing the topological features of the genome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 145.51
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 246.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Szabo Q, Bantignies F, Cavalli G (2019) Principles of genome folding into topologically associating domains. Sci Adv 5:eaaw1668. https://doi.org/10.1126/sciadv.aaw1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lieberman-Aiden E, van Berkum NL, Williams L et al (2009) Comprehensive map** of long-range interactions reveals folding principles of the human genome. Science 326:289–293. https://doi.org/10.1126/science.1181369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cremer T, Cremer M (2010) Chromosome territories. Cold Spring Harb Perspect Biol 2:a003889. https://doi.org/10.1101/cshperspect.a003889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kumaran RI, Thakar R, Spector DL (2008) Chromatin dynamics and gene positioning. Cell 132:929–934. https://doi.org/10.1016/j.cell.2008.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cremer M, Grasser F, Lanctôt C et al (2008) Multicolor 3D fluorescence in situ hybridization for imaging interphase chromosomes. Methods Mol Biol 463:205–239. https://doi.org/10.1007/978-1-59745-406-3_15

    Article  CAS  PubMed  Google Scholar 

  6. Schermelleh L, Heintzmann R, Leonhardt H (2010) A guide to super-resolution fluorescence microscopy. J Cell Biol 190:165–175. https://doi.org/10.1083/jcb.201002018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Huang B, Babcock H, Zhuang X (2010) Breaking the diffraction barrier: super-resolution imaging of cells. Cell 143:1047–1058. https://doi.org/10.1016/j.cell.2010.12.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gustafsson MGL, Shao L, Carlton PM et al (2008) Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys J 94:4957–4970. https://doi.org/10.1529/biophysj.107.120345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Heintzmann R, Cremer CG (1999) In: Bigio IJ, Schneckenburger H, Slavik J, Svanberg K, Viallet PM (eds) Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating. SPIE, Stockholm, pp 185–196

    Google Scholar 

  10. Markaki Y, Smeets D, Fiedler S et al (2012) The potential of 3D-FISH and super-resolution structured illumination microscopy for studies of 3D nuclear architecture: 3D structured illumination microscopy of defined chromosomal structures visualized by 3D (immuno)-FISH opens new perspectives for studies of nuclear architecture. BioEssays 34:412–426. https://doi.org/10.1002/bies.201100176

    Article  PubMed  Google Scholar 

  11. Bolzer A, Kreth G, Solovei I et al (2005) Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLoS Biol 3:e157. https://doi.org/10.1371/journal.pbio.0030157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Baddeley D, Chagin VO, Schermelleh L et al (2010) Measurement of replication structures at the nanometer scale using super-resolution light microscopy. Nucleic Acids Res 38:e8. https://doi.org/10.1093/nar/gkp901

    Article  CAS  PubMed  Google Scholar 

  13. Boyle S, Gilchrist S, Bridger JM et al (2001) The spatial organization of human chromosomes within the nuclei of normal and emerin-mutant cells. Hum Mol Genet 10:211–219

    Article  CAS  PubMed  Google Scholar 

  14. Cremer M, von Hase J, Volm T et al (2001) Non-random radial higher-order chromatin arrangements in nuclei of diploid human cells. Chromosom Res 9:541–567

    Article  CAS  Google Scholar 

  15. Branco MR, Pombo A (2006) Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations. PLoS Biol 4:e138. https://doi.org/10.1371/journal.pbio.0040138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cremer M, Schmid VJ, Kraus F et al (2017) Initial high-resolution microscopic map** of active and inactive regulatory sequences proves non-random 3D arrangements in chromatin domain clusters. Epigenetics Chromatin 10:39. https://doi.org/10.1186/s13072-017-0146-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Boettiger AN, Bintu B, Moffitt JR et al (2016) Super-resolution imaging reveals distinct chromatin folding for different epigenetic states. Nature 529:418–422. https://doi.org/10.1038/nature16496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schmid VJ, Cremer M, Cremer T (2017) Quantitative analyses of the 3D nuclear landscape recorded with super-resolved fluorescence microscopy. Methods 123:33–46. https://doi.org/10.1016/j.ymeth.2017.03.013

    Article  CAS  PubMed  Google Scholar 

  19. Sathitruangsak C, Righolt CH, Klewes L et al (2017) Distinct and shared three-dimensional chromosome organization patterns in lymphocytes, monoclonal gammopathy of undetermined significance and multiple myeloma. Int J Cancer 140:400–410. https://doi.org/10.1002/ijc.30461

    Article  CAS  PubMed  Google Scholar 

  20. Wang Y, Nagarajan M, Uhler C et al (2017) Orientation and repositioning of chromosomes correlate with cell geometry–dependent gene expression. MBoC 28:1997–2009. https://doi.org/10.1091/mbc.e16-12-0825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nagano T, Lubling Y, Stevens TJ et al (2013) Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502:59–64. https://doi.org/10.1038/nature12593

    Article  CAS  PubMed  Google Scholar 

  22. Boettiger A, Murphy S (2020) Advances in Chromatin Imaging at Kilobase-Scale Resolution. Trends Genet 36:273–287. https://doi.org/10.1016/j.tig.2019.12.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ye CJ, Stilgenbauer L, Moy A et al (2019) What is karyotype coding and why is genomic topology important for cancer and evolution? Front Genet 10:1082. https://doi.org/10.3389/fgene.2019.01082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ye CJ, Sharpe Z, Heng HH (2020) Origins and consequences of chromosomal instability: from cellular adaptation to genome chaos-mediated system survival. Genes (Basel) 11:1162. https://doi.org/10.3390/genes11101162

    Article  CAS  PubMed  Google Scholar 

  25. Kozubek S, Lukásová E, Marecková A et al (1999) The topological organization of chromosomes 9 and 22 in cell nuclei has a determinative role in the induction of t(9,22) translocations and in the pathogenesis of t(9,22) leukemias. Chromosoma 108:426–435. https://doi.org/10.1007/s004120050394

    Article  CAS  PubMed  Google Scholar 

  26. Quintás-Cardama A, Cortes J (2009) Molecular biology of bcr-abl1-positive chronic myeloid leukemia. Blood 113:1619–1630. https://doi.org/10.1182/blood-2008-03-144790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fabian-Morales E, Vallejo-Escamilla D, Gudiño A et al (2021) Large-scale topological disruption of chromosome territories 9 and 22 is associated with nonresponse to treatment in CML. Int J Cancer 150:1455. https://doi.org/10.1002/ijc.33903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Solovei I, Cremer M (2010) 3D-FISH on cultured cells combined with immunostaining. Methods Mol Biol 659:117–126. https://doi.org/10.1007/978-1-60761-789-1_8

    Article  CAS  PubMed  Google Scholar 

  29. Demmerle J, Innocent C, North AJ et al (2017) Strategic and practical guidelines for successful structured illumination microscopy. Nat Protoc 12:988–1010. https://doi.org/10.1038/nprot.2017.019

    Article  CAS  PubMed  Google Scholar 

  30. Kraus F, Miron E, Demmerle J et al (2017) Quantitative 3D structured illumination microscopy of nuclear structures. Nat Protoc 12:1011–1028. https://doi.org/10.1038/nprot.2017.020

    Article  CAS  PubMed  Google Scholar 

  31. Ball G, Demmerle J, Kaufmann R et al (2015) SIMcheck: a Toolbox for Successful Super-resolution Structured Illumination Microscopy. Sci Rep 5:15915. https://doi.org/10.1038/srep15915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Imaris 9.2 Reference Manual, Bitplane (2018) Oxford Instruments Company

    Google Scholar 

  33. Wang S, Su J-H, Beliveau BJ et al (2016) Spatial organization of chromatin domains and compartments in single chromosomes. Science 353:598–602. https://doi.org/10.1126/science.aaf8084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luis A. Herrera or Sara Frias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fabian-Morales, E., Rodríguez, A., Gudiño, A., Herrera, L.A., Frias, S. (2024). Profiling Chromosome Topological Features by Super-Resolution 3D Structured Illumination Microscopy. In: Ye, J.C., Heng, H.H. (eds) Cancer Cytogenetics and Cytogenomics. Methods in Molecular Biology, vol 2825. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3946-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3946-7_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3945-0

  • Online ISBN: 978-1-0716-3946-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation