A Complete Metaproteomic Workflow for Arabidopsis Roots Inoculated by Synthetic Bacteria

  • Protocol
  • First Online:
Metaproteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2820))

  • 72 Accesses

Abstract

Root metaproteome analysis can reveal the functions that govern plant-microbe and microbe-microbe interactions under specific environmental conditions. Efficient protein extraction method from microbes associated with plant roots is crucial for the comprehensive analysis of the metaproteome. In this chapter, a straightforward protein extraction method for roots of Arabidopsis inoculated with a microbial community that uses only milligrams of tissue is outlined. In addition, the plant inoculation using a synthetic community (SynCom) and the methods for a nanoflow liquid chromatography coupled to a high-resolution/high-accuracy mass spectrometer (LC-MS/MS) are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
GBP 34.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 159.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bai B, Liu W, Qiu X et al (2022) The root microbiome: community assembly and its contributions to plant fitness. J Integr Plant Biol 64:230–243. https://doi.org/10.1111/jipb.13226

    Article  PubMed  Google Scholar 

  2. Salvato F, Hettich RL, Kleiner M (2021) Five key aspects of metaproteomics as a tool to understand functional interactions in host-associated microbiomes. PLoS Pathog 17(2):e1009245. https://doi.org/10.1371/journal.ppat.1009245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Knief C, Delmotte N, Chaffron S et al (2012) Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J 6(7):1378. https://doi.org/10.1038/ismej.2011.192

    Article  CAS  PubMed  Google Scholar 

  4. Bao Z, Okubo T, Kubota K et al (2014) Metaproteomic identification of diazotrophic methanotrophs and their localization in root tissues of field-grown rice plants. Appl Environ Microbiol 80(16):5043–5052. https://doi.org/10.1128/AEM.00969-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Delmotte N, Knief C, Chaffron S et al (2009) Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc Natl Acad Sci USA 106:16428–16433. https://doi.org/10.1073/pnas.0905240106

    Article  PubMed  PubMed Central  Google Scholar 

  6. Salvato F, Vintila S, Finkel OM et al (2022) Evaluation of protein extraction methods for metaproteomic analyses of root-associated microbes. Mol Plant-Microbe Interact 35(11):977–988. https://doi.org/10.1094/MPMI-05-22-0116-TA

    Article  CAS  PubMed  Google Scholar 

  7. Finkel OM, Salas-González I, Castrillo G et al (2019) The effects of soil phosphorus content on plant microbiota are driven by the plant phosphate starvation response. PLoS Biol 17(11):e3000534. https://doi.org/10.1371/journal.pbio.3000534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Finkel OM, Salas-González I, Castrillo G et al (2020) A single bacterial genus maintains root growth in a complex microbiome. Nature 587:103–108. https://doi.org/10.1038/s41586-020-2778-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wiśniewski JR (2018) Filter-aided sample preparation for proteome analysis. In: Becher D (ed) Microbial proteomics. Methods in molecular biology, vol 1841. Humana Press, New York, pp 3–10. https://doi.org/10.1007/978-1-4939-8695-8_1

    Chapter  Google Scholar 

  10. Kleiner M, Thorson E, Sharp CE et al (2017) Assessing species biomass contributions in microbial communities via metaproteomics. Nat Commun 8(1):1558. https://doi.org/10.1038/s41467-017-01544-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tanca A, Palomba A, Deligios M et al (2013) Evaluating the impact of different sequence databases on metaproteome analysis: insights from a lab-assembled microbial mixture. PLoS One 8(12):e82981. https://doi.org/10.1371/journal.pone.0082981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tanca A, Palomba A, Fraumene C et al (2016) The impact of sequence database choice on metaproteomic results in gut microbiota studies. Microbiome 4(1):51. https://doi.org/10.1186/s40168-016-0196-8

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Salvato, F., Kleiner, M. (2024). A Complete Metaproteomic Workflow for Arabidopsis Roots Inoculated by Synthetic Bacteria. In: Salerno, C. (eds) Metaproteomics. Methods in Molecular Biology, vol 2820. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3910-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3910-8_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3909-2

  • Online ISBN: 978-1-0716-3910-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation