Metaproteomics for Coinfections in the Upper Respiratory Tract: The Case of COVID-19

  • Protocol
  • First Online:
Metaproteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2820))

  • 82 Accesses

Abstract

The upper respiratory tract (URT) is home to a diverse range of microbial species. Respiratory infections disturb the microbial flora in the URT, putting people at risk of secondary infections. The potential dangers and clinical effects of bacterial and fungal coinfections with SARS-CoV-2 support the need to investigate the microbiome of the URT using clinical samples. Mass spectrometry (MS)-based metaproteomics analysis of microbial proteins is a novel approach to comprehensively assess the clinical specimens with complex microbial makeup. The coronavirus that causes severe acute respiratory syndrome (SARS-CoV-2) is responsible for the COVID-19 pandemic resulting in a plethora of microbial coinfections impeding therapy, prognosis, and overall disease management. In this chapter, the corresponding workflows for MS-based shotgun proteomics and metaproteomic analysis are illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
GBP 34.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 159.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Van Den Bossche T, Arntzen MØ, Becher D et al (2021) The metaproteomics initiative: a coordinated approach for propelling the functional characterization of microbiomes. Microbiome 9(1):243. https://doi.org/10.1186/s40168-021-01176-w

    Article  PubMed  Google Scholar 

  2. Mills RH, Dulai PS, Vázquez-Baeza Y et al (2022) Multi-omics analyses of the ulcerative colitis gut microbiome link bacteroides vulgatus proteases with disease severity. Nat Microbiol 7:262–276. https://doi.org/10.1038/s41564-021-01050-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rabe A, Gesell Salazar M, Michalik S et al (2019) Metaproteomics analysis of microbial diversity of human saliva and tongue dorsum in young healthy individuals. J Oral Microbiol 11(1):1654786. https://doi.org/10.1080/20002297.2019.1654786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jouffret V, Miotello G, Culotta K et al (2021) Increasing the power of interpretation for soil metaproteomics data. Microbiome 9(1):195. https://doi.org/10.1186/s40168-021-01139-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Saito MA, Bertrand EM, Duffy ME et al (2019) Progress and challenges in ocean metaproteomics and proposed best practices for data sharing. J Proteome Res 18(4):1461–1476. https://doi.org/10.1021/acs.jproteome.8b00761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Salvato F, Hettich RL, Kleiner M (2021) Five key aspects of metaproteomics as a tool to understand functional interactions in host-associated microbiomes. PLoS Pathog 17(2):e1009245. https://doi.org/10.1371/journal.ppat.1009245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rudney JD, Jagtap PD, Reilly CS et al (2015) Protein relative abundance patterns associated with sucrose-induced dysbiosis are conserved across taxonomically diverse oral microcosm biofilm models of dental caries. Microbiome 3:69. https://doi.org/10.1186/s40168-015-0136-z

    Article  PubMed  PubMed Central  Google Scholar 

  8. Moreno-García E, Puerta-Alcalde P, Letona L et al (2022) Bacterial co-infection at hospital admission in patients with COVID-19. Int J Infect Dis 118:197–202. https://doi.org/10.1016/j.ijid.2022.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Thuy-Boun PS, Mehta S, Gruening B et al (2021) Metaproteomics analysis of SARS-CoV-2-infected patient samples reveals presence of potential coinfecting microorganisms. J Proteome Res 20(2):1451–1454. https://doi.org/10.1021/acs.jproteome.0c00822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Scopes RK (1974) Measurement of protein by spectrophotometry at 205 nm. Anal Biochem 59(1):277–282. https://doi.org/10.1016/0003-2697(74)90034-7

    Article  CAS  PubMed  Google Scholar 

  11. Mehta S, Bernt M, Chambers M et al (2023) A Galaxy of informatics resources for MS-based proteomics. Expert Rev Proteomics 20(11):251–266. https://doi.org/10.1080/14789450.2023.2265062

    Article  CAS  PubMed  Google Scholar 

  12. Jalili V, Afgan E, Gu Q et al (2020) The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2020 update. Nucleic Acids Res 48(W1):W395–W402. https://doi.org/10.1093/nar/gkaa434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Potgieter MG, Nel AJM, Fortuin S et al (2022) MetaNovo: a probabilistic approach to peptide discovery in complex metaproteomic datasets. bioRxiv. https://doi.org/10.1101/605550

  14. Vaudel M, Burkhart J, Zahedi R et al (2015) PeptideShaker enables reanalysis of MS-derived proteomics data sets. Nat Biotechnol 33(1):22–24. https://doi.org/10.1038/nbt.3109

    Article  CAS  PubMed  Google Scholar 

  15. Chambers MC, Maclean B, Burke R et al (2012) A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol 30:918–920. https://doi.org/10.1038/nbt.2377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gurdeep Singh R, Tanca A, Palomba A et al (2019) Unipept 4.0: functional analysis of metaproteome data. J Proteome Res 18(2):606–615. https://doi.org/10.1021/acs.jproteome.8b00716

    Article  CAS  PubMed  Google Scholar 

  17. Wen B, Wang X, Zhang B (2019) PepQuery enables fast, accurate, and convenient proteomic validation of novel genomic alterations. Genome Res 29(3):485–493. https://doi.org/10.1101/gr.235028.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pratik Jagtap or Sanjeeva Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bihani, S. et al. (2024). Metaproteomics for Coinfections in the Upper Respiratory Tract: The Case of COVID-19. In: Salerno, C. (eds) Metaproteomics. Methods in Molecular Biology, vol 2820. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3910-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3910-8_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3909-2

  • Online ISBN: 978-1-0716-3910-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation