Assaying Lysosomal Enzyme Activity in Dictyostelium discoideum

  • Protocol
  • First Online:
Dictyostelium discoideum

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2814))

  • 21 Accesses

Abstract

Lysosomes are membrane-enclosed organelles that digest intracellular material. They contain more than 50 different enzymes that can degrade a variety of macromolecules including nucleic acids, proteins, polysaccharides, and lipids. In addition to functioning within lysosomes, lysosomal enzymes are also secreted. Alterations in the levels and activities of lysosomal enzymes dysregulates lysosomes, which can lead to the intralysosomal accumulation of biological material and the development of lysosomal storage diseases (LSDs) in humans. Dictyostelium discoideum has a long history of being used to study the trafficking and functions of lysosomal enzymes. More recently, it has been used as a model system to study several LSDs. In this chapter, we outline the methods for assessing the activity of several lysosomal enzymes in D. discoideum (α-galactosidase, β-galactosidase, α-glucosidase, β-glucosidase, β-N-acetylglucosaminidase, α-mannosidase, cathepsin B, cathepsin D, cathepsin F, palmitoyl protein thioesterase 1, and tripeptidyl peptidase 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 179.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 235.39
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DI:

De-ionized

LIMP-2:

Lysosomal integral membrane protein 2

LSD:

Lysosomal storage disease

M6P:

Mannose-6-phosphate

MES:

2-(N-morpholino)ethanesulfonic acid

SM:

Sussman’s medium

References

  1. Bouhamdani N, Comeau D, Turcotte S (2021) A compendium of information on the lysosome. Front Cell Dev Biol 9:796262

    Article  Google Scholar 

  2. Trivedi PC, Bartlett JJ, Pulinilkunnil T (2020) Lysosomal biology and function: modern view of cellular debris bin. Cells 9:1–35

    Article  Google Scholar 

  3. Yang C, Wang X (2021) Lysosome biogenesis: regulation and functions. J Cell Biol 220:e202102001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cocchiaro P, De Pasquale V, Della Morte R, Tafuri S, Avallone L, Pizard A et al (2017) The multifaceted role of the lysosomal protease cathepsins in kidney disease. Front Cell Dev Biol 5:114

    Article  PubMed  PubMed Central  Google Scholar 

  5. Saftig P, Klumperman J (2009) Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat Rev Mol Cell Biol 10:623–635

    Article  CAS  PubMed  Google Scholar 

  6. Verkruyse LA, Hofmann SL (1996) Lysosomal targeting of palmitoyl-protein thioesterase. J Biol Chem 271:15831–15836

    Article  CAS  PubMed  Google Scholar 

  7. Schwake M, Schröder B, Saftig P (2013) Lysosomal membrane proteins and their central role. Traffic 14:739–748

    Article  CAS  PubMed  Google Scholar 

  8. Kornfeld S (1987) Trafficking of lysosomal enzymes. FASEB J 1:262–468

    Article  Google Scholar 

  9. Staudt C, Puissant E, Boonen M (2017) Subcellular trafficking of mammalian lysosomal proteins: an extended view. Int J Mol Sci 18:47

    Article  Google Scholar 

  10. Dahms NM, Lobel P, Kornfeld S (1989) Mannose 6-phosphate receptors and lysosomal enzyme targeting. J Biol Chem 264:12115–12118

    Article  CAS  PubMed  Google Scholar 

  11. Reczek D, Schwake M, Schröder J, Hughes H, Blanz J, ** X et al (2007) LIMP-2 is a receptor for lysosomal mannose-6-phosphate-independent targeting of β-glucocerebrosidase. Cell 131:770–783

    Article  CAS  PubMed  Google Scholar 

  12. Ruscetti T, Cardelli JA, Niswonger ML, O’Halloran TJ (1975) Clathrin heavy chain functions in sorting and secretion of lysosomal enzymes in Dictyostelium discoideum. Nature 258:273–273

    Google Scholar 

  13. New J, Thomas SM (2019) Autophagy-dependent secretion: mechanism, factors secreted, and disease implications. Autophagy 15:1682–1693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Buratta S, Tancini B, Sagini K, Delo F, Chiaradia E, Urbanelli L et al (2020) Lysosomal exocytosis, exosome release and secretory autophagy: the autophagic- and endo-lysosomal systems go extracellular. Int J Mol Med 21:2576

    CAS  Google Scholar 

  15. Cavalli G, Cenci S (2020) Autophagy and protein secretion. J Mol Biol 432:2525–2545

    Article  CAS  PubMed  Google Scholar 

  16. Tancini B, Buratta S, Delo F, Sagini K, Chiaradia E, Pellegrino RM et al (2020) Lysosomal exocytosis: the extracellular role of an intracellular organelle. Membranes 10:406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Castro-Gomes T, Corrotte M, Tam C, Andrews NW (2016) Plasma membrane repair is regulated extracellularly by proteases released from lysosomes. PLoS One 11:e0152583

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fujita K, Teramura N, Hattori S, Irie S, Mitsunaga-Nakatsubo K, Akimoto Y et al (2010) Mammalian arylsulfatase a functions as a novel component of the extracellular matrix. Connect Tissue Res 51:388–396

    Article  CAS  PubMed  Google Scholar 

  19. Ni X, Canuel M, Morales CR (2006) The sorting and trafficking of lysosomal proteins. Histol Histopathol 21:899–913

    CAS  PubMed  Google Scholar 

  20. Platt FM, Azzo A, Davidson BL, Neufeld EF, Tifft CJ (2018) Lysosomal storage diseases. Nat Rev Dis Primers 4:27

    Article  PubMed  Google Scholar 

  21. Stirnemann JÔ, Belmatoug N, Camou F, Serratrice C, Froissart R, Caillaud C et al (2017) A review of Gaucher disease pathophysiology, clinical presentation and treatments. Int J Mol Sci 18:441

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ceccarini MR, Codini M, Conte C, Patria F, Cataldi S, Bertelli M et al (2018) Alpha-mannosidosis: therapeutic strategies. Int J Mol Sci 19:1500

    Article  PubMed  PubMed Central  Google Scholar 

  23. Solovyeva VV, Shaimardanova AA, Chulpanova DS, Kitaeva KV, Chakrabarti L, Rizvanov AA (2018) New approaches to Tay-Sachs disease therapy. Front Physiol 9:1663

    Article  PubMed  PubMed Central  Google Scholar 

  24. Meena NK, Raben N (2020) Pompe disease: New developments in an old lysosomal storage disorder. Biomol Ther 10:1339

    CAS  Google Scholar 

  25. Yuskiv N, Higaki K, Stockler-Ipsiroglu S (2020) Morquio B disease. Disease characteristics and treatment options of a distinct GLB1-related dysostosis multiplex. Int J Mol Sci 21:9121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li X, Ren X, Zhang Y, Ding L, Huo M, Li Q (2022) Fabry disease: mechanism and therapeutics strategies. Front Pharmacol 13:1025740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Richardson JM, Woychik NA, Ebert DL, Dimond RL, Cardelli JA (1988) Inhibition of early but not late proteolytic processing events leads to the missorting and oversecretion of precursor forms of lysosomal enzymes in Dictyostelium discoideum. J Cell Biol 107:2097–2107

    Article  CAS  PubMed  Google Scholar 

  28. Knecht DA, Dimond RL (1981) Lysosomal enzymes possess a common antigenic determinant in the cellular slime mold, Dictyostelium discoideum. J Biol Chem 256:3564–3575

    Article  CAS  PubMed  Google Scholar 

  29. Cardelli JA, Golumbeski GS, Dimond RL (1986) Lysosomal enzymes in Dictyostelium discoideum are transported to lysosomes at distinctly different rates. J Cell Biol 102:1264–1270

    Article  CAS  PubMed  Google Scholar 

  30. Burns RA, Livi GP, Dimond RL (1981) Regulation and secretion of early developmentally controlled enzymes during axenic growth in Dictyostelium discoideum. Dev Biol 84:407–416

    Article  CAS  PubMed  Google Scholar 

  31. Dimond RL, Burns RA, Jordan KB (1981) Secretion of lysosomal enzymes in the cellular slime mold, Dictyostelium discoideum. J Biol Chem 256:6565–6572

    Article  CAS  PubMed  Google Scholar 

  32. Mierendorf RC Jr, Cardelli JA, Dimond RL (1985) Pathways involved in targeting and secretion of a lysosomal enzyme in Dictyostelium discoideum. J Cell Biol 100:1777–1787

    Article  CAS  PubMed  Google Scholar 

  33. Cardelli JA, Schatzle J, Bush JM, Richardson J, Ebert D, Freeze H (1990) Biochemical and genetic analysis of the biosynthesis, sorting, and secretion of Dictyostelium lysosomal enzymes. Dev Genet 11:454–462

    Article  CAS  PubMed  Google Scholar 

  34. Rossomando EF, Maldonado B, Crean EV, Kollar EJ (1978) Protease secretion during onset of development in Dictyostelium discoideum. J Cell Sci 30:305–318

    Article  CAS  PubMed  Google Scholar 

  35. Huber RJ, Williams RSB, Müller-Taubenberger A (2022) Editorial: Dictyostelium: a tractable cell and developmental model in biomedical research. Front Cell Dev Biol 10:909619

    Article  PubMed  PubMed Central  Google Scholar 

  36. Eichinger L, Pachebat JA, Glöckner G, Rajandream M-A, Sucgang R, Berriman M et al (2005) The genome of the social amoeba Dictyostelium discoideum. Nature 435:43–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dimond RL, Brenner M, Loomis WF (1973) Mutations affecting N-acetylglucosaminidase in Dictyostelium discoideum. Proc Natl Acad Sci USA 70:3356–3360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Phillips JE, Gomer RH (2015) Partial genetic suppression of a loss-of-function mutant of the neuronal ceroid lipofuscinosis-associated protease TPP1 in Dictyostelium discoideum. Dis Model Mech 8:147–156

    PubMed  Google Scholar 

  39. Kim WD, Huber RJ (2022) An altered transcriptome underlies cln5-deficiency phenotypes in Dictyostelium discoideum. Front Genet 13:1045738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kilpatrick DC, Stirling JL (1976) Properties and developmental regulation of an α-D-galactosidase from Dictyostelium discoideum. Biochem J 158:409–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Maruhn D (1976) Rapid colorimetric assay of β-galactosidase and N-acetyl-β-glucosaminidase in human urine. Clin Chim Acta 73:453–461

    Article  CAS  PubMed  Google Scholar 

  42. Wimmer B, Lottspeich F, Ritter J, Bronnenmeier K (1997) A novel type of thermostable α-D-glucosidase from Thermoanaerobacter thermohydrosulfuricus exhibiting maltodextrinohydrolase activity. Biochem J 328:581–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Coston MB, Loomis WF (1969) Isozymes of beta-glucosidase in Dictyostelium discoideum. J Bacteriol 100:1208–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Loomis WF (1970) Developmental regulation of α-mannosidase in Dictyostelium discoideum. J Bacteriol 103:375–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Loomis WF (1969) Acetylglucosaminidase, an early enzyme in the development of Dictyostelium discoideum. J Bacteriol 97:1149–1154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Huber RJ, Mathavarajah S (2018) Cln5 is secreted and functions as a glycoside hydrolase in Dictyostelium. Cell Signal 42:236–248

    Article  CAS  PubMed  Google Scholar 

  47. Barrett A (1980) Fluorimetric assays for cathepsin B and cathepsin H with methylcoumarylamide substrates. Biochem J 187:909–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fonovič M, Brömme D, Turk V, Turk B (2004) Human cathepsin F: expression in baculovirus system, characterization and inhibition by protein inhibitors. Biol Chem 385:505–509

    Article  PubMed  Google Scholar 

  49. Stumpf M, Müller R, Gaßen B, Wehrstedt R, Fey P, Karow MA et al (2017) A tripeptidyl peptidase 1 is a binding partner of the Golgi pH regulator (GPHR) in Dictyostelium. Dis Model Mech 10:897–907

    CAS  PubMed  PubMed Central  Google Scholar 

  50. van Diggelen OP, Keulemans JLM, Winchester B, Hofman IL, Vanhanen SL, Santavuori P et al (1999) A rapid fluorogenic palmitoyl-protein thioesterase assay: pre- and postnatal diagnosis of INCL. Mol Genet Metab 66:240–244

    Article  PubMed  Google Scholar 

  51. Fey P, Kowal AS, Gaudet P, Pilcher KE, Chisholm RL (2007) Protocols for growth and development of Dictyostelium discoideum. Nat Protoc 2:1307–1316

    Article  CAS  PubMed  Google Scholar 

  52. Stajdohar M, Rosengarten RD, Kokosar J, Jeran L, Blenkus D, Shaulsky G, Zupan B (2017) dictyExpress: a web-based platform for sequence data management and analytics in Dictyostelium and beyond. BMC Bioinformatics 18:291

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Huber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kim, W.D., DiGiacinto, A.F., Huber, R.J. (2024). Assaying Lysosomal Enzyme Activity in Dictyostelium discoideum. In: Kimmel, A.R. (eds) Dictyostelium discoideum. Methods in Molecular Biology, vol 2814. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3894-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3894-1_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3893-4

  • Online ISBN: 978-1-0716-3894-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation