Phagocytosis

  • Protocol
  • First Online:
Intracellular Pathogens

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2813))

  • 247 Accesses

Abstract

One hundred years have passed since the death of Élie Metchnikoff (1845–1916). He was the first to observe the uptake of particles by cells and realized the importance of this process, named phagocytosis, for the host response to injury and infection. He also was a strong advocate of the role of phagocytosis in cellular immunity, and with this, he gave us the basis for our modern understanding of inflammation and the innate immune response. Phagocytosis is an elegant but complex process for the ingestion and elimination of pathogens, but it is also important for the elimination of apoptotic cells and hence fundamental for tissue homeostasis. Phagocytosis can be divided into four main steps: (i) recognition of the target particle, (ii) signaling to activate the internalization machinery, (iii) phagosome formation, and (iv) phagolysosome maturation. In this chapter, we present a general view of our current knowledge on phagocytosis performed mainly by professional phagocytes through antibody and complement receptors and discuss aspects that remain incompletely understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 188.31
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 235.39
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rosales C (2018) The first 100 years of phagocytosis. In: Rosales C (ed) Phagocytosis: overview, history and role in human health and disease. Nova Science Publishers, Hauppauge, pp 1–20

    Google Scholar 

  2. Vikhanski L (2016) Immunity: how Elie Metchnikoff changed the course of modern medicine. Chicago Review Press, Chicago

    Google Scholar 

  3. Rosales C, Uribe-Querol E (2017) Phagocytosis: a fundamental process in immunity. Biomed Res Int 2017:9042851. https://doi.org/10.1155/2017/9042851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Levin R, Grinstein S, Canton J (2016) The life cycle of phagosomes: formation, maturation, and resolution. Immunol Rev 273(1):156–179. https://doi.org/10.1111/imr.12439

    Article  CAS  PubMed  Google Scholar 

  5. Rabinovitch M (1995) Professional and non-professional phagocytes: an introduction. Trends Cell Biol 5:85–87. https://doi.org/10.1016/s0962-8924(00)88955-2

    Article  CAS  PubMed  Google Scholar 

  6. Flannagan RS, Jaumouillé V, Grinstein S (2012) The cell biology of phagocytosis. Annu Rev Pathol 7:61–98. https://doi.org/10.1146/annurev-pathol-011811-132445

    Article  CAS  PubMed  Google Scholar 

  7. Gordon S (2016) Phagocytosis: an immunobiologic process. Immunity 44(3):463–475. https://doi.org/10.1016/j.immuni.2016.02.026

    Article  CAS  PubMed  Google Scholar 

  8. Kawai T, Akira S (2011) Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34(5):637–650. https://doi.org/10.1016/j.immuni.2011.05.006

    Article  CAS  PubMed  Google Scholar 

  9. Iwasaki A, Medzhitov R (2015) Control of adaptive immunity by the innate immune system. Nat Immunol 16(4):343–353. https://doi.org/10.1038/ni.3123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nagata S, Suzuki J, Segawa K, Fujii T (2016) Exposure of phosphatidylserine on the cell surface. Cell Death Differ 23(6):952–961. https://doi.org/10.1038/cdd.2016.7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dambuza IM, Brown GD (2015) C-type lectins in immunity: recent developments. Curr Opin Immunol 32:21–27. https://doi.org/10.1016/j.coi.2014.12.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Herre J, Marshall AS, Caron E, Edwards AD, Williams DL, Schweighoffer E, Tybulewicz V, Reis e Sousa C, Gordon S, Brown GD (2004) Dectin-1 uses novel mechanisms for yeast phagocytosis in macrophages. Blood 104(13):4038–4045. https://doi.org/10.1182/blood-2004-03-1140

    Article  CAS  PubMed  Google Scholar 

  13. Ezekowitz RA, Sastry K, Bailly P, Warner A (1990) Molecular characterization of the human macrophage mannose receptor: demonstration of multiple carbohydrate recognition-like domains and phagocytosis of yeasts in Cos-1 cells. J Exp Med 172(6):1785–1794. https://doi.org/10.1084/jem.172.6.1785

    Article  CAS  PubMed  Google Scholar 

  14. Schiff DE, Kline L, Soldau K, Lee JD, Pugin J, Tobias PS, Ulevitch RJ (1997) Phagocytosis of Gram-negative bacteria by a unique CD14-dependent mechanism. J Leukoc Biol 62(10):786–794. https://doi.org/10.1002/jlb.62.6.786

    Article  CAS  PubMed  Google Scholar 

  15. Canton J, Neculai D, Grinstein S (2013) Scavenger receptors in homeostasis and immunity. Nat Rev Immunol 13:621–634. https://doi.org/10.1038/nri3515

    Article  CAS  PubMed  Google Scholar 

  16. Peiser L, Gough PJ, Kodama T, Gordon S (2000) Macrophage class A scavenger receptor-mediated phagocytosis of Escherichia coli: role of cell heterogeneity, microbial strain, and culture conditions in vitro. Infect Immun 68(4):1953–1963. https://doi.org/10.1128/iai.68.4.1953-1963.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Peiser L, Makepeace K, Plüddemann A, Savino S, Wright JC, Pizza M, Rappuoli R, Moxon ER, Gordon S (2006) Identification of Neisseria meningitidis nonlipopolysaccharide ligands for class A macrophage scavenger receptor by using a novel assay. Infect Immun 74(9):5191–5199. https://doi.org/10.1128/IAI.00124-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Patel SN, Serghides L, Smith TG, Febbraio M, Silverstein RL, Kurtz TW, Pravenec M, Kain KC (2004) CD36 mediates the phagocytosis of Plasmodium falciparum-infected erythrocytes by rodent macrophages. J Infect Dis 189:204–213. https://doi.org/10.1086/380764

    Article  CAS  PubMed  Google Scholar 

  19. Kraal G, van der Laan LJ, Elomaa O, Tryggvason K (2000) The macrophage receptor MARCO. Microbes Infect 2(3):313–316. https://doi.org/10.1016/s1286-4579(00)00296-3

    Article  CAS  PubMed  Google Scholar 

  20. Mukhopadhyay S, Chen Y, Sankala M, Peiser L, Pikkarainen T, Kraal G, Tryggvason K, Gordon S (2006) MARCO, an innate activation marker of macrophages, is a class A scavenger receptor for Neisseria meningitidis. Eur J Immunol 36(4):940–949. https://doi.org/10.1002/eji.200535389

    Article  CAS  PubMed  Google Scholar 

  21. van der Laan LJ, Döpp EA, Haworth R, Pikkarainen T, Kangas M, Elomaa O, Dijkstra CD, Gordon S, Tryggvason K, Kraal G (1999) Regulation and functional involvement of macrophage scavenger receptor MARCO in clearance of bacteria in vivo. J Immunol 162(2):939–947. https://doi.org/10.4049/jimmunol.162.2.939

    Article  PubMed  Google Scholar 

  22. Herre J, Willment JA, Gordon S, Brown GD (2004) The role of Dectin-1 in antifungal immunity. Crit Rev Immunol 24(3):193–203. https://doi.org/10.1615/critrevimmunol.v24.i3.30

    Article  CAS  PubMed  Google Scholar 

  23. Doyle SE, O’Connell RM, Miranda GA, Vaidya SA, Chow EK, Liu PT, Suzuki S, Suzuki N, Modlin RL, Yeh WC, Lane TF, Cheng G (2004) Toll-like receptors induce a phagocytic gene program through p38. J Exp Med 199(1):81–90. https://doi.org/10.1084/jem.20031237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Segawa K, Nagata S (2015) An poptotic “eat me” signal: phosphatidylserine exposure. Trends Cell Biol 25(11):639–650. https://doi.org/10.1016/j.tcb.2015.08.003

    Article  CAS  PubMed  Google Scholar 

  25. Kobayashi N, Karisola P, Peña-Cruz V, Dorfman DM, **ushi M, Umetsu SE, Butte MJ, Nagumo H, Chernova I, Zhu B, Sharpe AH, Ito S, Dranoff G, Kaplan GG, Casasnovas JM, Umetsu DT, Dekruyff RH, Freeman GJ (2007) TIM-1 and TIM-4 glycoproteins bind phosphatidylserine and mediate uptake of apoptotic cells. Immunity 27(6):927–940. https://doi.org/10.1016/j.immuni.2007.11.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Park SY, Jung MY, Kim HJ, Lee SJ, Kim SY, Lee BH, Kwon TH, Park RW, Kim IS (2008) Rapid cell corpse clearance by stabilin-2, a membrane phosphatidylserine receptor. Cell Death Differ 15(1):192–201. https://doi.org/10.1038/sj.cdd.4402242

    Article  CAS  PubMed  Google Scholar 

  27. Park D, Tosello-Trampont AC, Elliott MR, Lu M, Haney LB, Ma Z, Klibanov AL, Mandell JW, Ravichandran KS (2007) BAI-1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature 450(7168):430–434. https://doi.org/10.1038/nature06329

    Article  CAS  PubMed  Google Scholar 

  28. Hanayama R, Tanaka M, Miwa K, Shinohara A, Iwamatsu A, Nagata S (2002) Identification of a factor that links apoptotic cells to phagocytes. Nature 417(6885):182–187. https://doi.org/10.1038/417182a

    Article  CAS  PubMed  Google Scholar 

  29. Albert ML, Kim JI, Birge RB (2000) αvβ5 integrin recruits the CrkII-Dock180-rac1 complex for phagocytosis of apoptotic cells. Nat Cell Biol 2(12):899–905. https://doi.org/10.1038/35046549

    Article  CAS  PubMed  Google Scholar 

  30. Chen XW, Shen Y, Sun CY, Wu FX, Chen Y, Yang CD (2011) Anti-class a scavenger receptor autoantibodies from systemic lupus erythematosus patients impair phagocytic clearance of apoptotic cells by macrophages in vitro. Arthritis Res Ther 13(1):R9. https://doi.org/10.1186/ar3230

    Article  PubMed  PubMed Central  Google Scholar 

  31. Platt N, da Silva RP, Gordon S (1999) Class A scavenger receptors and the phagocytosis of apoptotic cells. Immunol Lett 65(1–2):15–19. https://doi.org/10.1016/s0165-2478(98)00118-7

    Article  CAS  PubMed  Google Scholar 

  32. Rogers NJ, Lees MJ, Gabriel L, Maniati E, Rose SJ, Potter PK, Morley BJ (2009) A defect in Marco expression contributes to systemic lupus erythematosus development via failure to clear apoptotic cells. J Immunol 182(4):1982–1990. https://doi.org/10.4049/jimmunol.0801320

    Article  CAS  PubMed  Google Scholar 

  33. Penberthy KK, Ravichandran KS (2016) Apoptotic cell recognition receptors and scavenger receptors. Immunol Rev 269(1):44–59. https://doi.org/10.1111/imr.12376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Greenberg ME, Sun M, Zhang R, Febbraio M, Silverstein R, Hazen SL (2006) Oxidized phosphatidylserine-CD36 interactions play an essential role in macrophage-dependent phagocytosis of apoptotic cells. J Exp Med 203(12):2613–2625. https://doi.org/10.1084/jem.20060370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Brown S, Heinisch I, Ross E, Shaw K, Buckley CD, Savill J (2002) Apoptosis disables CD31-mediated cell detachment from phagocytes promoting binding and engulfment. Nature 418(6894):200–203. https://doi.org/10.1038/nature00811

    Article  CAS  PubMed  Google Scholar 

  36. Tsai RK, Discher DE (2008) Inhibition of “self” engulfment through deactivation of myosin-II at the phagocytic synapse between human cells. J Cell Biol 180(5):989–1003. https://doi.org/10.1083/jcb.200708043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Arandjelovic S, Ravichandran KS (2015) Phagocytosis of apoptotic cells in homeostasis. Nat Immunol 16(9):907–917. https://doi.org/10.1038/ni.3253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nimmerjahn F, Ravetch JV (2011) FcγRs in health and disease. Curr Top Microbiol Immunol 350:105–125. https://doi.org/10.1007/82_2010_86

    Article  CAS  PubMed  Google Scholar 

  39. Rosales C, Uribe-Querol E (2013) Fc receptors: cell activators of antibody functions. Adv Biosci Biotech 4:21–33. https://doi.org/10.4236/abb.2013.44A004

    Article  CAS  Google Scholar 

  40. Bakema JE, van Egmond M (2011) The human immunoglobulin A Fc receptor FcαRI: a multifaceted regulator of mucosal immunity. Mucosal Immunol 4(6):612–624. https://doi.org/10.1038/mi.2011.36

    Article  CAS  PubMed  Google Scholar 

  41. Ravetch JV, Bolland S (2001) IgG Fc receptors. Annu Rev Immunol 19:275–290. https://doi.org/10.1146/annurev.immunol.19.1.275

    Article  CAS  PubMed  Google Scholar 

  42. Fodor S, Jakus Z, Mócsai A (2006) ITAM-based signaling beyond the adaptive immune response. Immunol Lett 104(1–2):29–37. https://doi.org/10.1016/j.imlet.2005.11.001

    Article  CAS  PubMed  Google Scholar 

  43. Underhill DM, Goodridge HS (2007) The many faces of ITAMs. Trends Immunol 28(2):66–73. https://doi.org/10.1016/j.it.2006.12.004

    Article  CAS  PubMed  Google Scholar 

  44. Ravetch JV (2003) Fc receptors. In: Paul WE (ed) Fundamental Immunology, 5th edn. Lippincott Williams & Wilkins, Philadelphia, pp 631–684

    Google Scholar 

  45. Nimmerjahn F, Ravetch JV (2010) Antibody-mediated modulation of immune responses. Immunol Rev 236:265–275. https://doi.org/10.1111/j.1600-065X.2010.00910.x

    Article  CAS  PubMed  Google Scholar 

  46. Tridandapani S, Siefker K, Teillaud J-L, Carter JE, Wewers MD, Anderson CL (2002) Regulated expression and inhibitory function of FcγRIIb in human monocytic cells. J Biol Chem 277(7):5082–5089. https://doi.org/10.1074/jbc.M110277200

    Article  CAS  PubMed  Google Scholar 

  47. Daëron M, Lesourne R (2006) Negative signaling in Fc receptor complexes. Adv Immunol 89:39–86. https://doi.org/10.1016/S0065-2776(05)89002-9

    Article  CAS  PubMed  Google Scholar 

  48. Rivas-Fuentes S, García-García E, Nieto-Castañeda G, Rosales C (2010) Fcγ receptors exhibit different phagocytosis potential in human neutrophils. Cell Immunol 263(1):114–121. https://doi.org/10.1016/j.cellimm.2010.03.006

    Article  CAS  PubMed  Google Scholar 

  49. Alemán OR, Mora N, Cortes-Vieyra R, Uribe-Querol E, Rosales C (2016) Differential use of human neutrophil Fcγ receptors for inducing neutrophil extracellular trap formation. J Immunol Res 2016:142643. https://doi.org/10.1155/2016/2908034

    Article  CAS  Google Scholar 

  50. Alemán OR, Mora N, Cortes-Vieyra R, Uribe-Querol E, Rosales C (2016) Transforming growth factor-β-activated kinase 1 is required for human FcγRIIIb-induced neutrophil extracellular trap formation. Front Immunol 7:277. https://doi.org/10.3389/fimmu.2016.00277

    Article  PubMed  PubMed Central  Google Scholar 

  51. van Egmond M, Hanneke van Vuuren AJ, van de Winkel JG (1999) The human Fc receptor for IgA (Fc alpha RI, CD89) on transgenic peritoneal macrophages triggers phagocytosis and tumor cell lysis. Immunol Lett 68(1):83–87. https://doi.org/10.1016/s0165-2478(99)00034-6

    Article  PubMed  Google Scholar 

  52. Carroll MC (2004) The complement system in regulation of adaptive immunity. Nat Immunol 5(10):981–986. https://doi.org/10.1038/ni1113

    Article  CAS  PubMed  Google Scholar 

  53. Brown EJ (2005) Complement receptors, adhesion, and phagocytosis. In: Rosales C (ed) Molecular mechanisms of phagocytosis. Landes Bioscience/Springer Science, Georgetown, pp 49–57

    Chapter  Google Scholar 

  54. Dustin ML (2016) Complement receptors in myeloid cell adhesion and phagocytosis. Microbiol Spectr 4(6):MCHD-0034-2016. https://doi.org/10.1128/microbiolspec.MCHD-0034-2016

    Article  Google Scholar 

  55. van Lookeren CM, Wiesmann C, Brown EJ (2007) Macrophage complement receptors and pathogen clearance. Cell Microbiol 9(9):2095–2102. https://doi.org/10.1111/j.1462-5822.2007.00981.x

    Article  CAS  Google Scholar 

  56. Ross GD, Reed W, Dalzell JG, Becker SE, Hogg N (1992) Macrophage cytoskeleton association with CR3 and CR4 regulates receptor mobility and phagocytosis of iC3b-opsonized erythrocytes. J Leukoc Biol 51(2):109–117. https://doi.org/10.1002/jlb.51.2.109

    Article  CAS  PubMed  Google Scholar 

  57. Rosales C (2007) Fc receptor and integrin signaling in phagocytes. Signal Transduct 7(5–6):386–401. https://doi.org/10.1002/sita.200700141

    Article  CAS  Google Scholar 

  58. Tohyama Y, Yamamura H (2006) Complement-mediated phagocytosis – the role of Syk. IUBMB Life 58(5–6):304–308. https://doi.org/10.1080/15216540600746377

    Article  CAS  PubMed  Google Scholar 

  59. Blystone SD, Graham IL, Lindberg FP, Brown EJ (1994) Integrin αvβ3 differentially regulates adhesive and phagocytic functions of the fibronectin receptor α5β1. J Cell Biol 127(4):1129–1137. https://doi.org/10.1083/jcb.127.4.1129

    Article  CAS  PubMed  Google Scholar 

  60. Jaumouillé V, Grinstein S (2011) Receptor mobility, the cytoskeleton, and particle binding during phagocytosis. Curr Opin Cell Biol 23(1):22–29. https://doi.org/10.1016/j.ceb.2010.10.006

    Article  CAS  PubMed  Google Scholar 

  61. Flannagan RS, Harrison RE, Yip CM, Jaqaman K, Grinstein S (2010) Dynamic macrophage “probing” is required for the efficient capture of phagocytic targets. J Cell Biol 191(6):1205–1218. https://doi.org/10.1083/jcb.201007056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Patel PC, Harrison RE (2008) Membrane ruffles capture C3bi-opsonized particles in activated macrophages. Mol Biol Cell 19(11):4628–4639. https://doi.org/10.1091/mbc.E08-02-0223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Freeman S, Grinstein S (2014) Phagocytosis: receptors, signal integration, and the cytoskeleton. Immunol Rev 262:193–215. https://doi.org/10.1111/imr.12212

    Article  CAS  PubMed  Google Scholar 

  64. Garcia-Garcia E, Rosales C (2001) Fc receptor signaling during phagocytosis. In: Cooper MD, Takai T, Ravetch JV (eds) Activating and inhibitory immunoglobulin-like receptors. Springer, Tokyo, pp 165–174

    Chapter  Google Scholar 

  65. Garcia-Garcia E, Rosales C (2002) Signal transduction in Fc receptor-mediated phagocytosis. J Leukoc Biol 72(6):1092–1108. https://doi.org/10.1189/jlb.72.6.1092

    Article  CAS  PubMed  Google Scholar 

  66. Rosales C, Uribe-Querol E (2013) Antibody – Fc receptor interactions in antimicrobial functions. Curr Immunol Rev 9:44–55. https://doi.org/10.2174/1573395511309010006

    Article  CAS  Google Scholar 

  67. Moon KD, Post CB, Durden DL, Zhou Q, De P, Harrison ML, Geahlen RL (2005) Molecular basis for a direct interaction between the Syk protein-tyrosine kinase and phosphoinositide 3-kinase. J Biol Chem 280(2):1543–1551. https://doi.org/10.1074/jbc.M407805200

    Article  CAS  PubMed  Google Scholar 

  68. Marshall JG, Booth JW, Stambolic V, Mak T, Balla T, Schreiber AD, Meyer T, Grinstein S (2001) Restricted accumulation of phosphatidylinositol 3-kinase products in a plasmalemmal subdomain during Fcγ receptor-mediated phagocytosis. J Cell Biol 153(7):1369–1380. https://doi.org/10.1083/jcb.153.7.1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hoppe AD, Swanson JA (2004) Cdc42, Rac1, and Rac2 display distinct patterns of activation during phagocytosis. Mol Biol Cell 15(8):3509–3519. https://doi.org/10.1091/mbc.E03-11-0847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Higgs HN, Pollard TD (2000) Activation by Cdc42 and PIP(2) of Wiskott-Aldrich syndrome protein (WASp) stimulates actin nucleation by Arp2/3 complex. J Cell Biol 150(6):1311–1320. https://doi.org/10.1083/jcb.150.6.1311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Marchand JB, Kaiser DA, Pollard TD, Higgs HN (2001) Interaction of WASP/Scar proteins with actin and vertebrate Arp2/3 complex. Nat Cell Biol 3(1):76–82. https://doi.org/10.1038/35050590

    Article  CAS  PubMed  Google Scholar 

  72. Botelho RJ, Teruel M, Dierckman R, Anderson R, Wells A, York JD, Meyer T, Grinstein S (2000) Localized biphasic changes in phosphatidylinositol-4,5-bisphosphate at sites of phagocytosis. J Cell Biol 151(7):1353–1368. https://doi.org/10.1083/jcb.151.7.1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Liao F, Shin HS, Rhee SG (1992) Tyrosine phosphorylation of phospholipase C-gamma 1 induced by cross-linking of the high-affinity or low-affinity Fc receptor for IgG in U937 cells. Proc Natl Acad Sci USA 89(8):3659–3663. https://doi.org/10.1073/pnas.89.8.3659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Larsen EC, DiGennaro JA, Saito N, Mehta S, Loegering DJ, Mazurkiewicz JE, Lennartz MR (2000) Differential requirement for classic and novel PKC isoforms in respiratory burst and phagocytosis in RAW 264.7 cells. J Immunol 165(5):2809–2817. https://doi.org/10.4049/jimmunol.165.5.2809

    Article  CAS  PubMed  Google Scholar 

  75. Sánchez-Mejorada G, Rosales C (1998) Fcγ receptor-mediated mitogen-activated protein kinase activation in monocytes is independent of Ras. J Biol Chem 273(42):27610–27619. https://doi.org/10.1074/jbc.273.42.27610

    Article  PubMed  Google Scholar 

  76. Torres-Gomez A, Cabañas C, Lafuente EM (2020) Phagocytic integrins: activation and signaling. Front Immunol 11:738. https://doi.org/10.3389/fimmu.2020.00738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kaplan GG (1977) Differences in the mode of phagocytosis with Fc and C3 receptors in macrophages. Scand J Immunol 6(8):797–807. https://doi.org/10.1111/j.1365-3083.1977.tb02153.x

    Article  CAS  PubMed  Google Scholar 

  78. Aderem A, Underhill DM (1999) Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 17:593–623. https://doi.org/10.1146/annurev.immunol.17.1.593

    Article  CAS  PubMed  Google Scholar 

  79. Hall AB, Gakidis MA, Glogauer M, Wilsbacher JL, Gao S, Swat W, Brugge JS (2006) Requirements for Vav guanine nucleotide exchange factors and Rho GTPases in FcγR- and complement-mediated phagocytosis. Immunity 24(3):305–316. https://doi.org/10.1016/j.immuni.2006.02.005

    Article  CAS  PubMed  Google Scholar 

  80. Jaumouillé V, Cartagena-Rivera AX, Waterman CM (2019) Coupling of β2 integrins to actin by a mechanosensitive molecular clutch drives complement receptor-mediated phagocytosis. Nat Cell Biol 21(11):1357–1369. https://doi.org/10.1038/s41556-019-0414-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rotty JD, Brighton HE, Craig SL, Asokan SB, Cheng N, Ting JP, Bear JE (2017) Arp2/3 complex is required for macrophage integrin functions but Is dispensable for FcR phagocytosis and in vivo motility. Dev Cell 42(5):498–513.e496. https://doi.org/10.1016/j.devcel.2017.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Caron E, Self AJ, Hall A (2000) The GTPase Rap1 controls functional activation of macrophage integrin αMβ2 by LPS and other inflammatory mediators. Curr Biol 10(16):974–978. https://doi.org/10.1016/s0960-9822(00)00641-2

    Article  CAS  PubMed  Google Scholar 

  83. Ortiz-Stern A, Rosales C (2003) Cross-talk between Fc receptors and integrins. Immunol Lett 90(2–3):137–143. https://doi.org/10.1016/j.imlet.2003.08.004

    Article  CAS  PubMed  Google Scholar 

  84. Vachon E, Martin R, Kwok V, Cherepanov V, Chow CW, Doerschuk CM, Plumb J, Grinstein S, Downey GP (2007) CD44-mediated phagocytosis induces inside-out activation of complement receptor-3 in murine macrophages. Blood 110(13):4492–4502. https://doi.org/10.1182/blood-2007-02-076539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Futosi K, Fodor S, Mócsai A (2013) Neutrophil cell surface receptors and their intracellular signal transduction pathways. Int Immunopharmacol 17(3):638–650. https://doi.org/10.1016/j.intimp.2013.06.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Botelho RJ, Harrison RE, Stone JC, Hancock JF, Philips MR, Jongstra-Bilen J, Mason D, Plumb J, Gold MR, Grinstein S (2009) Localized diacylglycerol-dependent stimulation of Ras and Rap1 during phagocytosis. J Biol Chem 284(42):28522–28532. https://doi.org/10.1074/jbc.M109.009514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lagarrigue F, Kim C, Ginsberg MH (2016) The Rap1-RIAM-talin axis of integrin activation and blood cell function. Blood 128(4):479–487. https://doi.org/10.1182/blood-2015-12-638700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Calderwood DA, Yan B, de Pereda JM, Alvarez BG, Fujioka Y, Liddington RC, Ginsberg MH (2002) The phosphotyrosine binding-like domain of talin activates integrins. J Biol Chem 277(24):21749–21758. https://doi.org/10.1074/jbc.M111996200

    Article  CAS  PubMed  Google Scholar 

  89. Campbell ID, Ginsberg MH (2004) The talin-tail interaction places integrin activation on FERM ground. Trends Biochem Sci 29(8):429–435. https://doi.org/10.1016/j.tibs.2004.06.005

    Article  CAS  PubMed  Google Scholar 

  90. Moser M, Nieswandt B, Ussar S, Pozgajova M, Fässler R (2008) Kindlin-3 is essential for integrin activation and platelet aggregation. Nat Med 14(3):325–330. https://doi.org/10.1038/nm1722

    Article  CAS  PubMed  Google Scholar 

  91. Fagerholm SC, Lek HS, Morrison VL (2014) Kindlin-3 in the immune system. Am J Clin Exp Immunol 3(1):37–42

    PubMed  PubMed Central  Google Scholar 

  92. Sun H, Zhi K, Hu L, Fan Z (2021) The activation and regulation of β2 integrins in phagocytes and phagocytosis. Front Immunol 12:633639. https://doi.org/10.3389/fimmu.2021.633639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Rosetti F, Mayadas TN (2016) The many faces of Mac-1 in autoimmune disease. Immunol Rev 269(1):175–193. https://doi.org/10.1111/imr.12373

    Article  CAS  PubMed  Google Scholar 

  94. Lin TH, Rosales C, Mondal K, Bolen JB, Haskill S, Juliano RL (1995) Integrin-mediated tyrosine phosphorylation and cytokine message induction in monocytic cells. A possible signaling role for the Syk tyrosine kinase. J Biol Chem 270(27):16189–16197. https://doi.org/10.1074/jbc.270.27.16189

    Article  CAS  PubMed  Google Scholar 

  95. Mócsai A, Zhou M, Meng F, Tybulewicz VL, Lowell CA (2002) Syk is required for integrin signaling in neutrophils. Immunity 16(4):547–558. https://doi.org/10.1016/s1074-7613(02)00303-5

    Article  PubMed  Google Scholar 

  96. Yan SR, Huang M, Berton G (1997) Signaling by adhesion in human neutrophils: activation of the p72syk tyrosine kinase and formation of protein complexes containing p72syk and Src family kinases in neutrophils spreading over fibrinogen. J Immunol 158(4):1902–1910. https://doi.org/10.4049/jimmunol.158.4.1902

    Article  CAS  PubMed  Google Scholar 

  97. Berton G, Mócsai A, Lowell CA (2005) Src and Syk kinases: key regulators of phagocytic cell activation. Trends Immunol 26(4):208–214. https://doi.org/10.1016/j.it.2005.02.002

    Article  CAS  PubMed  Google Scholar 

  98. Mócsai A, Ruland J, Tybulewicz VL (2010) The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat Rev Immunol 10(6):387–402. https://doi.org/10.1038/nri2765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Shi Y, Tohyama Y, Kadono T, He J, Miah SM, Hazama R, Tanaka C, Tohyama K, Yamamura H (2006) Protein-tyrosine kinase Syk is required for pathogen engulfment in complement-mediated phagocytosis. Blood 107(11):4554–4562. https://doi.org/10.1182/blood-2005-09-3616

    Article  CAS  PubMed  Google Scholar 

  100. Dewitt S, Tian W, Hallett MB (2006) Localised PtdIns(3,4,5)P3 or PtdIns(3,4)P2 at the phagocytic cup is required for both phagosome closure and Ca2+ signalling in HL60 neutrophils. J Cell Sci 119(Pt 3):443–451. https://doi.org/10.1242/jcs.02756

    Article  CAS  PubMed  Google Scholar 

  101. Deckert M, Tartare-Deckert S, Couture C, Mustelin T, Altman A (1996) Functional and physical interactions of Syk family kinases with the Vav proto-oncogene product. Immunity 5(6):591–604. https://doi.org/10.1016/s1074-7613(00)80273-3

    Article  CAS  PubMed  Google Scholar 

  102. Caron E, Hall A (1998) Identification of two distinct mechanisms of phagocytosis controlled by different Rho GTPases. Science 282(5394):1717–1721. https://doi.org/10.1126/science.282.5394.1717

    Article  CAS  PubMed  Google Scholar 

  103. Tzircotis G, Braga VM, Caron E (2011) RhoG is required for both FcγR- and CR3-mediated phagocytosis. J Cell Sci 124(Pt 17):2897–2902. https://doi.org/10.1242/jcs.084269

    Article  CAS  PubMed  Google Scholar 

  104. May RC, Caron E, Hall A, Machesky LM (2000) Involvement of the Arp2/3 complex in phagocytosis mediated by FcgammaR or CR3. Nat Cell Biol 2(4):246–248. https://doi.org/10.1038/35008673

    Article  CAS  PubMed  Google Scholar 

  105. Wiedemann A, Patel JC, Lim J, Tsun A, van Kooyk Y, Caron E (2006) Two distinct cytoplasmic regions of the beta2 integrin chain regulate RhoA function during phagocytosis. J Cell Biol 172(7):1069–1079. https://doi.org/10.1083/jcb.200508075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wennerberg K, Ellerbroek SM, Liu RY, Karnoub AE, Burridge K, Der CJ (2002) RhoG signals in parallel with Rac1 and Cdc42. J Biol Chem 277(49):47810–47817. https://doi.org/10.1074/jbc.M203816200

    Article  CAS  PubMed  Google Scholar 

  107. Olazabal IM, Caron E, May RC, Schilling K, Knecht DA, Machesky LM (2002) Rho-kinase and myosin-II control phagocytic cup formation during CR, but not FcgammaR, phagocytosis. Curr Biol 12(16):1413–1418. https://doi.org/10.1016/s0960-9822(02)01069-2

    Article  CAS  PubMed  Google Scholar 

  108. del Rio A, Perez-Jimenez R, Liu R, Roca-Cusachs P, Fernandez JM, Sheetz MP (2009) Stretching single talin rod molecules activates vinculin binding. Science 323(5914):638–641. https://doi.org/10.1126/science.1162912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Saez de Guinoa J, Barrio L, Carrasco YR (2013) Vinculin arrests motile B cells by stabilizing integrin clustering at the immune synapse. J Immunol 191(5):2742–2751. https://doi.org/10.4049/jimmunol.1300684

    Article  CAS  PubMed  Google Scholar 

  110. Allen LA, Aderem A (1996) Molecular definition of distinct cytoskeletal structures involved in complement- and Fc receptor-mediated phagocytosis in macrophages. J Exp Med 184(2):627–637. https://doi.org/10.1084/jem.184.2.627

    Article  CAS  PubMed  Google Scholar 

  111. Newman SL, Mikus LK, Tucci MA (1991) Differential requirements for cellular cytoskeleton in human macrophage complement receptor- and Fc receptor-mediated phagocytosis. J Immunol 146(3):967–974

    Article  CAS  PubMed  Google Scholar 

  112. Lewkowicz E, Herit F, Le Clainche C, Bourdoncle P, Perez F, Niedergang F (2008) The microtubule-binding protein CLIP-170 coordinates mDia1 and actin reorganization during CR3-mediated phagocytosis. J Cell Biol 183(7):1287–1298. https://doi.org/10.1083/jcb.200807023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Colucci-Guyon E, Niedergang F, Wallar BJ, Peng J, Alberts AS, Chavrier P (2005) A role for mammalian diaphanous-related formins in complement receptor (CR3)-mediated phagocytosis in macrophages. Curr Biol 15(22):2007–2012. https://doi.org/10.1016/j.cub.2005.09.051

    Article  CAS  PubMed  Google Scholar 

  114. Palazzo AF, Cook TA, Alberts AS, Gundersen GG (2001) mDia mediates Rho-regulated formation and orientation of stable microtubules. Nat Cell Biol 3(8):723–729. https://doi.org/10.1038/35087035

    Article  CAS  PubMed  Google Scholar 

  115. Ostrowski PP, Grinstein S, Freeman SA (2016) Diffusion barriers, mechanical forces, and the biophysics of phagocytosis. Dev Cell 38(2):135–146. https://doi.org/10.1016/j.devcel.2016.06.023

    Article  CAS  PubMed  Google Scholar 

  116. Springer TA (1990) Adhesion receptors of the immune system. Nature 346(6283):425–434. https://doi.org/10.1038/346425a0

    Article  CAS  PubMed  Google Scholar 

  117. Chang VT, Fernandes RA, Ganzinger KA, Lee SF, Siebold C, McColl J, Jönsson P, Palayret M, Harlos K, Coles CH, Jones EY, Lui Y, Huang E, Gilbert RJ, Klenerman D, Aricescu AR, Davis SJ (2016) Initiation of T cell signaling by CD45 segregation at “close contacts”. Nat Immunol 17(5):574–582. https://doi.org/10.1038/ni.3392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Vonna L, Wiedemann A, Aepfelbacher M, Sackmann E (2007) Micromechanics of filopodia mediated capture of pathogens by macrophages. Eur Biophys J 36:145–151. https://doi.org/10.1007/s00249-006-0118-y

    Article  CAS  PubMed  Google Scholar 

  119. Freeman SA, Goyette J, Furuya W, Woods EC, Bertozzi CR, Bergmeier W, Hinz B, van der Merwe PA, Das R, Grinstein S (2016) Integrins form an expanding diffusional barrier that coordinates phagocytosis. Cell 164(1–2):128–140. https://doi.org/10.1016/j.cell.2015.11.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Goodridge HS, Reyes CN, Becker CA, Katsumoto TR, Ma J, Wolf AJ, Bose N, Chan AS, Magee AS, Danielson ME, Weiss A, Vasilakos JP, Underhill DM (2011) Activation of the innate immune receptor Dectin-1 upon formation of a “phagocytic synapse”. Nature 472(7344):471–475. https://doi.org/10.1038/nature10071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Dustin ML (2012) Signaling at neuro/immune synapses. J Clin Invest 122(4):1149–1155. https://doi.org/10.1172/JCI58705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. van Spriel AB, Leusen JH, van Egmond M, Dijkman HB, Assmann KJ, Mayadas TN, van de Winkel JG (2001) Mac-1 (CD11b/CD18) is essential for Fc receptor-mediated neutrophil cytotoxicity and immunologic synapse formation. Blood 97(8):2478–2486. https://doi.org/10.1182/blood.v97.8.2478

    Article  PubMed  Google Scholar 

  123. Yan M, Collins RF, Grinstein S, Trimble WS (2005) Coronin-1 function is required for phagosome formation. Mol Biol Cell 16(7):3077–3087. https://doi.org/10.1091/mbc.E04-11-0989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Bamburg JR, Bernstein BW (2010) Roles of ADF/cofilin in actin polymerization and beyond. F1000 Biol Rep 2:62. https://doi.org/10.3410/B2-62

    Article  PubMed  PubMed Central  Google Scholar 

  125. Nag S, Larsson M, Robinson RC, Burtnick LD (2013) Gelsolin: the tail of a molecular gymnast. Cytoskeleton 70(7):360–384. https://doi.org/10.1002/cm.21117

    Article  CAS  PubMed  Google Scholar 

  126. Bravo-Cordero JJ, Magalhaes MA, Eddy RJ, Hodgson L, Condeelis J (2013) Functions of cofilin in cell locomotion and invasion. Nat Rev Mol Cell Biol 14(7):405–415. https://doi.org/10.1038/nrm3609

    Article  CAS  PubMed  Google Scholar 

  127. Marion S, Mazzolini J, Herit F, Bourdoncle P, Kambou-Pene N, Hailfinger S, Sachse M, Ruland J, Benmerah A, Echard A, Thome M, Niedergang F (2012) The NF-κB signaling protein Bcl10 regulates actin dynamics by controlling AP1 and OCRL-bearing vesicles. Dev Cell 23(5):954–967. https://doi.org/10.1016/j.devcel.2012.09.021

    Article  CAS  PubMed  Google Scholar 

  128. Park H, Cox D (2009) Cdc42 regulates Fcγ receptor-mediated phagocytosis through the activation and phosphorylation of Wiskott-Aldrich syndrome protein (WASP) and neural-WASP. Mol Biol Cell 20(21):4500–4508. https://doi.org/10.1091/mbc.E09-03-0230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Tsuboi S, Meerloo J (2007) Wiskott-Aldrich syndrome protein is a key regulator of the phagocytic cup formation in macrophages. J Biol Chem 282(47):34194–34203. https://doi.org/10.1074/jbc.M705999200

    Article  CAS  PubMed  Google Scholar 

  130. Cox D, Tseng CC, Bjekic G, Greenberg S (1999) A requirement for phosphatidylinositol 3-kinase in pseudopod extension. J Biol Chem 274(3):1240–1247. https://doi.org/10.1074/jbc.274.3.1240

    Article  CAS  PubMed  Google Scholar 

  131. Beemiller P, Zhang Y, Mohan S, Levinsohn E, Gaeta I, Hoppe AD, Swanson JA (2010) A Cdc42 activation cycle coordinated by PI 3-kinase during Fc receptor-mediated phagocytosis. Mol Biol Cell 21(3):470–480. https://doi.org/10.1091/mbc.E08-05-0494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Schlam D, Bagshaw RD, Freeman SA, Collins RF, Pawson T, Fairn GD, Grinstein S (2015) Phosphoinositide 3-kinase enables phagocytosis of large particles by terminating actin assembly through Rac/Cdc42 GTPase-activating proteins. Nat Commun 6:8623. https://doi.org/10.1038/ncomms9623

    Article  CAS  PubMed  Google Scholar 

  133. Swanson JA, Johnson MT, Beningo K, Post P, Mooseker M, Araki N (1999) A contractile activity that closes phagosomes in macrophages. J Cell Sci 112(Pt 3):307–316. https://doi.org/10.1242/jcs.112.3.307

    Article  CAS  PubMed  Google Scholar 

  134. Araki N, Hatae T, Furukawa A, Swanson JA (2003) Phosphoinositide-3-kinase-independent contractile activities associated with Fcγ-receptor-mediated phagocytosis and macropinocytosis in macrophages. J Cell Sci 116(Pt 2):247–257. https://doi.org/10.1242/jcs.00235

    Article  CAS  PubMed  Google Scholar 

  135. Dart AE, Tollis S, Bright MD, Frankel G, Endres RG (2012) The motor protein myosin 1G functions in FcγR-mediated phagocytosis. J Cell Sci 125(Pt 24):6020–6029. https://doi.org/10.1242/jcs.109561

    Article  CAS  PubMed  Google Scholar 

  136. Cox D, Berg JS, Cammer M, Chinegwundoh JO, Dale BM, Cheney RE, Greenberg S (2002) Myosin X is a downstream effector of PI(3)K during phagocytosis. Nat Cell Biol 4(7):469–477. https://doi.org/10.1038/ncb805

    Article  CAS  PubMed  Google Scholar 

  137. Marie-Anaïs F, Mazzolini J, Herit F, Niedergang F (2016) Dynamin-Actin cross talk contributes to phagosome formation and closure. Traffic 17(5):487–499. https://doi.org/10.1111/tra.12386

    Article  CAS  PubMed  Google Scholar 

  138. Nair-Gupta P, Baccarini A, Tung N, Seyffer F, Florey O, Huang Y, Banerjee M, Overholtzer M, Roche PA, Tampé R, Brown BD, Amsen D, Whiteheart SW, Blander JM (2014) TLR signals induce phagosomal MHC-I delivery from the endosomal recycling compartment to allow cross-presentation. Cell 158(3):506–521. https://doi.org/10.1016/j.cell.2014.04.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Vashi N, Andrabi SB, Ghanwat S, Suar M, Kumar D (2017) Ca2+-dependent focal exocytosis of Golgi-derived vesicles helps phagocytic uptake in macrophages. J Biol Chem 292(13):5144–5165. https://doi.org/10.1074/jbc.M116.743047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Wähe A, Kasmapour B, Schmaderer C, Liebl D, Sandhoff K, Nykjaer A, Griffiths G, Gutierrez MG (2010) Golgi-to-phagosome transport of acid sphingomyelinase and prosaposin is mediated by sortilin. J Cell Sci 123(Pt 14):2502–2511. https://doi.org/10.1242/jcs.067686

    Article  CAS  PubMed  Google Scholar 

  141. Fairn GD, Grinstein S (2012) How nascent phagosomes mature to become phagolysosome. Trends Immunol 33(8):397–405. https://doi.org/10.1016/j.it.2012.03.003

    Article  CAS  PubMed  Google Scholar 

  142. Canton J (2014) Phagosome maturation in polarized macrophages. J Leukoc Biol 96(5):729–738. https://doi.org/10.1189/jlb.1MR0114-021R

    Article  CAS  PubMed  Google Scholar 

  143. Gutierrez MG (2013) Functional role(s) of phagosomal Rab GTPases. Small GTPases 4(3):148–158. https://doi.org/10.4161/sgtp.25604

    Article  PubMed  PubMed Central  Google Scholar 

  144. Kitano M, Nakaya M, Nakamura T, Nagata S, Matsuda M (2008) Imaging of Rab5 activity identifies essential regulators for phagosome maturation. Nature 453(7192):241–245. https://doi.org/10.1038/nature06857

    Article  CAS  PubMed  Google Scholar 

  145. Christoforidis S, McBride HM, Burgoyne RD, Zerial M (1999) The Rab5 effector EEA1 is a core component of endosome docking. Nature 397(6720):621–625. https://doi.org/10.1038/17618

    Article  CAS  PubMed  Google Scholar 

  146. Vieira OV, Botelho RJ, Rameh L, Brachmann SM, Matsuo T, Davidson HW, Schreiber A, Backer JM, Cantley LC, Grinstein S (2001) Distinct roles of class I and class III phosphatidylinositol 3-kinases in phagosome formation and maturation. J Cell Biol 155(1):19–25. https://doi.org/10.1083/jcb.200107069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Araki N, Johnson MT, Swanson JA (1996) A role for phosphoinositide 3-kinase in the completion of macropinocytosis and phagocytosis by macrophages. J Cell Biol 135(5):1249–1260. https://doi.org/10.1083/jcb.135.5.1249

    Article  CAS  PubMed  Google Scholar 

  148. Vieira OV, Bucci C, Harrison RE, Trimble WS, Lanzetti L, Gruenberg J, Schreiber AD, Stahl PD, Grinstein S (2003) Modulation of Rab5 and Rab7 recruitment to phagosomes by phosphatidylinositol 3-kinase. Mol Cell Biol 23(7):2501–2514. https://doi.org/10.1128/mcb.23.7.2501-2514.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Callaghan J, Nixon S, Bucci C, Toh BH, Stenmark H (1999) Direct interaction of EEA1 with Rab5b. Eur J Biochem 265(1):361–366. https://doi.org/10.1046/j.1432-1327.1999.00743.x

    Article  CAS  PubMed  Google Scholar 

  150. McBride HM, Rybin V, Murphy C, Giner A, Teasdale R, Zerial M (1999) Oligomeric complexes link Rab5 effectors with NSF and drive membrane fusion via interactions between EEA1 and syntaxin 13. Cell 98(3):377–386. https://doi.org/10.1016/s0092-8674(00)81966-2

    Article  CAS  PubMed  Google Scholar 

  151. Kinchen JM, Ravichandran KS (2008) Phagosome maturation: going through the acid test. Nat Rev Mol Cell Biol 9(10):781–795. https://doi.org/10.1038/nrm2515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Marshansky V, Futai M (2008) The V-type H+-ATPase in vesicular trafficking: targeting, regulation and function. Curr Opin Cell Biol 20(4):415–426. https://doi.org/10.1016/j.ceb.2008.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Rink J, Ghigo E, Kalaidzidis Y, Zerial M (2005) Rab conversion as a mechanism of progression from early to late endosomes. Cell 122(5):735–749. https://doi.org/10.1016/j.cell.2005.06.043

    Article  CAS  PubMed  Google Scholar 

  154. Harrison RE, Bucci C, Vieira OV, Schroer TA, Grinstein S (2003) Phagosomes fuse with late endosomes and/or lysosomes by extension of membrane protrusions along microtubules: role of Rab7 and RILP. Mol Cell Biol 23(18):6494–6506. https://doi.org/10.1128/MCB.23.18.6494-6506.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Jordens I, Fernandez-Borja M, Marsman M, Dusseljee S, Janssen L, Calafat J, Janssen H, Wubbolts R, Neefjes J (2001) The Rab7 effector protein RILP controls lysosomal transport by inducing the recruitment of dynein-dynactin motors. Curr Biol 11(21):1680–1685. https://doi.org/10.1016/s0960-9822(01)00531-0

    Article  CAS  PubMed  Google Scholar 

  156. Jeschke A, Haas A (2016) Deciphering the roles of phosphoinositide lipids in phagolysosome biogenesis. Commun Integr Biol 9(3):e1174798. https://doi.org/10.1080/19420889.2016.1174798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Schink KO, Raiborg C, Stenmark H (2013) Phosphatidylinositol 3-phosphate, a lipid that regulates membrane dynamics, protein sorting and cell signalling. BioEssays 35(10):900–912. https://doi.org/10.1002/bies.201300064

    Article  CAS  PubMed  Google Scholar 

  158. Braulke T, Bonifacino JS (2009) Sorting of lysosomal proteins. Biochim Biophys Acta 1793(4):605–614. https://doi.org/10.1016/j.bbamcr.2008.10.016

    Article  CAS  PubMed  Google Scholar 

  159. Masson PL, Heremans JF, Schonne E (1969) Lactoferrin, an iron-binding protein in neutrophilic leukocytes. J Exp Med 130(3):643–658. https://doi.org/10.1084/jem.130.3.643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Babior BM (2004) NADPH oxidase. Curr Opin Immunol 16(1):42–47. https://doi.org/10.1016/j.coi.2003.12.001

    Article  CAS  PubMed  Google Scholar 

  161. Minakami R, Sumimotoa H (2006) Phagocytosis-coupled activation of the superoxide-producing phagocyte oxidase, a member of the NADPH oxidase (nox) family. Int J Hematol 84(3):193–198. https://doi.org/10.1532/IJH97.06133

    Article  CAS  PubMed  Google Scholar 

  162. Nauseef WM (2014) Myeloperoxidase in human neutrophil host defence. Cell Microbiol 16(8):1146–1155. https://doi.org/10.1111/cmi.12312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Anderson CL, Shen L, Eicher DM, Wewers MD, Gill JK (1990) Phagocytosis mediated by three distinct Fcγ receptor classes on human leukocytes. J Exp Med 171(4):1333–1345. https://doi.org/10.1084/jem.171.4.1333

    Article  CAS  PubMed  Google Scholar 

  164. van Spriel AB, van den Herik-Oudijk IE, van Sorge NM, Vilé HA, van Strijp JA, van de Winkel JG (1999) Effective phagocytosis and killing of Candida albicans via targeting FcγRI (CD64) or FcαRI (CD89) on neutrophils. J Infect Dis 179(3):661–669. https://doi.org/10.1086/314643

    Article  PubMed  Google Scholar 

  165. Fällman M, Andersson R, Andersson T (1993) Signaling properties of CR3 (CD11b/CD18) and CR1 (CD35) in relation to phagocytosis of complement-opsonized particles. J Immunol 151(1):330–338. https://doi.org/10.4049/jimmunol.151.1.330

    Article  PubMed  Google Scholar 

  166. Ghiran I, Barbashov SF, Klickstein LB, Tas SW, Jensenius JC, Nicholson-Weller A (2000) Complement receptor 1/CD35 is a receptor for mannan-binding lectin. J Exp Med 192(12):1797–1808. https://doi.org/10.1084/jem.192.12.1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Beller DI, Springer TA, Schreiber RD (1982) Anti-Mac-1 selectively inhibits the mouse and human type three complement receptor. J Exp Med 156(4):1000–1009. https://doi.org/10.1084/jem.156.4.1000

    Article  CAS  PubMed  Google Scholar 

  168. Keizer GD, Te Velde AA, Schwarting R, Figdor CG, De Vries JE (1987) Role of p150,95 in adhesion, migration, chemotaxis and phagocytosis of human monocytes. Eur J Immunol 17(9):1317–1322. https://doi.org/10.1002/eji.1830170915

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research in the authors’ laboratory was supported by grant PAPIIT IN205523 from Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México, Mexico, and grant CF-2023-I-610 from Consejo Nacional de Humanidades, Ciencia y Tecnología (CONAHCyT), Mexico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Rosales .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Uribe-Querol, E., Rosales, C. (2024). Phagocytosis. In: Thakur, A. (eds) Intracellular Pathogens. Methods in Molecular Biology, vol 2813. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3890-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3890-3_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3889-7

  • Online ISBN: 978-1-0716-3890-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation