Recent Advancements in Radiopharmaceuticals for Infection Imaging

  • Protocol
  • First Online:
Intracellular Pathogens

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2813))

Abstract

COVID-19 pandemic has heightened the interest toward diagnosis and treatment of infectious diseases. Nuclear medicine, with its powerful scintigraphic, single photon emission computer tomography (SPECT), and positron emission tomography (PET) imaging modalities, has always played an important role in diagnosis of infections and distinguishing them from the sterile inflammation. In addition to the clinically available radiopharmaceuticals, there has been a decades-long effort to develop more specific imaging agents with some examples being radiolabeled antibiotics and antimicrobial peptides for bacterial imaging, radiolabeled antifungals for fungal infections imaging, radiolabeled pathogen-specific antibodies, and molecular engineered constructs. In this chapter, we discuss some examples of the work published in the last decade on develo** nuclear imaging agents for bacterial, fungal, and viral infections to generate more interest among nuclear medicine community toward conducting clinical trials of these novel probes, as well as toward develo** novel radiotracers for imaging infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 188.31
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 235.39
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Palestro CJ, Glaudemans A, Dierckx R (2013) Multiagent imaging of inflammation and infection with radionuclides. Clin Translat Imaging 1(6):385–396

    Article  Google Scholar 

  2. Palestro CJ (2015) Radionuclide imaging of osteomyelitis. Semin Nucl Med 45(1):32–46

    Article  PubMed  Google Scholar 

  3. Chen W, Dilsizian V (2020) Molecular imaging of cardiovascular device infection: targeting the bacteria or the host-pathogen immune response? J Nucl Med 61(3):319–326

    Article  CAS  PubMed  Google Scholar 

  4. Sasser TA, Van Avermaete AE, White A et al (2013) Bacterial infection probes and imaging strategies in clinical nuclear medicine and preclinical molecular imaging. Curr Top Med Chem 13(4):479–487

    Article  CAS  PubMed  Google Scholar 

  5. Ebenhan T, Lazzeri E, Gheysens O (2018) Imaging of bacteria: is there any Hope for the future based on past experience? Curr Pharm Des 24(7):772–786

    Article  CAS  PubMed  Google Scholar 

  6. Naqvi SAR (2021) (99m)Tc-labeled antibiotics for infection diagnosis: mechanism, action, and progress. Chem Biol Drug Des. https://doi.org/10.1111/cbdd.13923

  7. Halder KK, Nayak DK, Baishya R et al (2011) (99m)Tc-labeling of ciprofloxacin and nitrofuryl thiosemicarbazone using fac-[(99m)Tc(CO)3(H2O)3] core: evaluation of their efficacy as infection imaging agents. Metallomics 3(10):1041–1048

    Article  CAS  PubMed  Google Scholar 

  8. Fang S, Jiang Y, Gan Q et al (2020) Design, preparation, and evaluation of a novel (99m)TcN complex of ciprofloxacin xanthate as a potential bacterial infection imaging agent. Molecules 25(24). https://doi.org/10.3390/molecules25245837

  9. Zhang S, Zhang W, Wang Y et al (2011) Synthesis and biodistribution of a novel ((9)(9)m)TcN complex of norfloxacin dithiocarbamate as a potential agent for bacterial infection imaging. Bioconjug Chem 22(3):369–375

    Article  PubMed  Google Scholar 

  10. Kakkar D, Tiwari AK, Chuttani K et al (2012) Design, synthesis, and antimycobacterial property of PEG-bis(INH) conjugates. Chem Biol Drug Des 80(2):245–253

    Article  CAS  PubMed  Google Scholar 

  11. Erfani M, Doroudi A, Hadisi L et al (2013) (99m)Tc-tricabonyl labeling of ofloxacin and its biological evaluation in Staphylococcus aureus as an infection imaging agent. J Label Comp Radiopharm 56(12):627–631

    Article  CAS  Google Scholar 

  12. Mukherjee A, Sahoo S, Sarma HD et al (2014) Preparation and evaluation of three mucoadhesive dosage forms using (99m)Tc-Ofloxacin. Appl Radiat Isot 89:192–198

    Article  CAS  PubMed  Google Scholar 

  13. Kaul A, Hazari PP, Rawat H et al (2013) Preliminary evaluation of technetium-99m-labeled ceftriaxone: infection imaging agent for the clinical diagnosis of orthopedic infection. Int J Infect Dis 17(4):263–270

    Article  Google Scholar 

  14. Hina S, Rajoka MI, Roohi S et al (2014) Preparation, biodistribution, and scintigraphic evaluation of (99m)Tc-clindamycin: an infection imaging agent. Appl Biochem Biotechnol 174(4):1420–1433

    Article  CAS  PubMed  Google Scholar 

  15. Ilem-Ozdemir D, Asikoglu M, Ozkilic H et al (2014) (99m) Tc-Doxycycline hyclate: a new radiolabeled antibiotic for bacterial infection imaging. J Label Comp Radiopharm 57(1):36–41

    Article  Google Scholar 

  16. Ferreira Ddos S, Boratto FA, Cardoso VN et al (2015) Alendronate-coated long-circulating liposomes containing 99mtechnetium-ceftizoxime used to identify osteomyelitis. Int J Nanomedicine 10:2441–2450

    PubMed  Google Scholar 

  17. Teixeira LE, Soares GG, Teixeira HC et al (2015) Efficacy of (99m)Tc-labeled ceftizoxime in the diagnosis of subclinical infections associated with titanium implants in rats. Surg Infect 16(3):352–357

    Article  Google Scholar 

  18. Ilem-Ozdemir D, Asikoglu M, Ozkilic H et al (2016) Gamma scintigraphy and biodistribution of (99m)Tc-cefotaxime sodium in preclinical models of bacterial infection and sterile inflammation. J Label Comp Radiopharm 59(3):109–116

    Article  CAS  Google Scholar 

  19. Sharma BG, Kumar N, Nishad DK et al (2016) Development of microbial trigger based oral formulation of Tinidazole and its gamma scintigraphy evaluation: a promising tool against anaerobic microbes associated GI problems. Eur J Pharm Sci 89:94–104

    Article  CAS  PubMed  Google Scholar 

  20. Ahmed MT, Naqvi SAR, Rasheed R et al (2017) Technetium-99m-labeled sulfadiazine: a targeting radiopharmaceutical for scintigraphic imaging of infectious foci due to Escherichia coli in mouse and rabbit models. Appl Biochem Biotechnol 183(1):374–384

    Article  CAS  PubMed  Google Scholar 

  21. Rasheed R, Naqvi SAR, Gillani SJH et al (2017) (99m) Tc-tazobactam, a novel infection imaging agent: Radiosynthesis, quality control, biodistribution, and infection imaging studies. J Label Comp Radiopharm 60(5):242–249

    Article  CAS  Google Scholar 

  22. Iqbal A, Naqvi SAR, Rasheed R et al (2018) Radiosynthesis and biodistribution of (99m)Tc-Metronidazole as an Escherichia coli infection imaging radiopharmaceutical. Appl Biochem Biotechnol 185(1):127–139

    Article  CAS  PubMed  Google Scholar 

  23. Satpati D, Arjun C, Krishnamohan R et al (2016) (68)Ga-labeled ciprofloxacin conjugates as radiotracers for targeting bacterial infection. Chem Biol Drug Des 87(5):680–686

    Article  CAS  PubMed  Google Scholar 

  24. Northrup JD, Mach RH, Sellmyer MA (2019) Radiochemical approaches to imaging bacterial infections: intracellular versus extracellular targets. Int J Mol Sci 20(22). https://doi.org/10.3390/ijms20225808

  25. Naqvi SAR, Drlica K (2017) Fluoroquinolones as imaging agents for bacterial infection. Dalton Trans 46(42):14452–14460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang H, Lu Y, Liu L et al (2014) Radiosynthesis and biological evaluation of a novel enoyl-ACP reductase inhibitor for Staphylococcus aureus. Eur J Med Chem 88:66–73

    Article  CAS  PubMed  Google Scholar 

  27. Mota F, Jadhav R, Ruiz-Bedoya CA et al (2020) Radiosynthesis and biodistribution of (18)F-Linezolid in Mycobacterium tuberculosis-infected mice using positron emission tomography. ACS Infect Dis 6(5):916–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu L, Xu Y, Shea C et al (2010) Radiosynthesis and bioimaging of the tuberculosis chemotherapeutics isoniazid, rifampicin and pyrazinamide in baboons. J Med Chem 53(7):2882–2891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Esteves PJ, Abrantes J, Baldauf HM et al (2018) The wide utility of rabbits as models of human diseases. Exp Mol Med 50(5):1–10

    Article  CAS  PubMed  Google Scholar 

  30. Ebenhan T, Gheysens O, Kruger HG et al (2014) Antimicrobial peptides: their role as infection-selective tracers for molecular imaging. Biomed Res Int 2014:867381. https://doi.org/10.1155/2014/867381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kamaleshwaran KK, Rajkumar N, Mohanan V et al (2015) 99m-Tc-ubiquicidin scintigraphy in diagnosis of knee prosthesis infection and comparison with F-18 fluorodeoxy-glucose positron emission tomography/computed tomography. Indian J Nucl Med 30(3):259–262. https://doi.org/10.4103/0972-3919.158540

    Article  PubMed  PubMed Central  Google Scholar 

  32. Auletta S, Baldoni D, Varani M et al (2019) Comparison of 99mTc-UBI 29-41, 99mTc-ciprofloxacin, 99mTc-ciprofloxacin dithiocarbamate and 111In-biotin for targeting experimental Staphylococcus aureus and Escherichia coli foreign-body infections: an ex-vivo study. Q J Nucl Med Mol Imaging 63(1):37–47

    Article  PubMed  Google Scholar 

  33. Ebenhan T, Sathekge MM, Lengana T et al (2018) (68)Ga-NOTA-functionalized Ubiquicidin: cytotoxicity, biodistribution, radiation dosimetry, and first-in-human PET/CT imaging of infections. J Nucl Med 59(2):334–339

    Article  CAS  PubMed  Google Scholar 

  34. Boddeti DK, Kumar V (2021) Evaluation of (68)Ga-DOTA-Ubiquicidin (29-41) for imaging Staphylococcus aureus (Staph A) infection and turpentine-induced inflammation in a preclinical setting. World J Nucl Med 20(3):266–272

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mazaheri Tehrani M, Erfani M, Amirmozafari N (2021) [(99m) Tc-HYNIC/EDDA]-MccJ25 antimicrobial peptide analog as a potential radiotracer for detection of infection. Chem Biol Drug Des 97(4):904–913

    Article  CAS  PubMed  Google Scholar 

  36. Follacchio GA, Pala A, Scaccianoce S et al (2019) In vivo microbial targeting of 99mTc-labeled human beta-Defensin-3 in a rat model of infection. Clin Nucl Med 44(11):602–e606

    Article  Google Scholar 

  37. Aweda TA, Muftuler ZFB, Massicano AVF et al (2019) Radiolabeled cationic peptides for targeted imaging of infection. Contrast Media Mol Imaging 2019:3149249. https://doi.org/10.1155/2019/3149249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chopra S, Singh B, Koul A et al (2019) Radiosynthesis and pre-clinical evaluation of [68Ga] labeled antimicrobial peptide fragment GF-17 as a potential infection imaging PET radiotracer. Appl Radiat Isot 149:9–21

    Article  CAS  PubMed  Google Scholar 

  39. Weinstein EA, Ordonez AA, DeMarco VP et al (2014) Imaging Enterobacteriaceae infection in vivo with 18F-fluorodeoxysorbitol positron emission tomography. Sci Transl Med. https://doi.org/10.1126/scitranslmed.3009815

  40. Namavari M, Gowrishankar G, Hoehne A et al (2015) Synthesis of [18F]-labelled maltose derivatives as PET tracers for imaging bacterial infection. Mol Imaging Biol 17:168–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gowrishankar G, Hardy J, Wardak M et al (2017) Specific imaging of bacterial infection using 6 -18F-Fluoromaltotriose: a second-generation PET tracer targeting the Maltodextrin Transporter in bacteria. J Nucl Med 58:1679–1684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shukla J, Arora G, Kotwal PP et al (2010) Radiolabeled oligosaccharides nanoprobes for infection imaging. Hell J Nucl Med 13(3):218–223

    PubMed  Google Scholar 

  43. Pickett JE, Thompson JM, Sadowska A et al (2018) Molecularly specific detection of bacterial lipoteichoic acid for diagnosis of prosthetic joint infection of the bone. Bone Res 6:13–18

    Article  PubMed  PubMed Central  Google Scholar 

  44. Foss CA, Kulik L, Ordonez AA et al (2019) SPECT/CT imaging of Mycobacterium tuberculosis infection with [(125)I]anti-C3d mAb. Mol Imaging Biol 21(3):473–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Thornton CR (2020) Detection of the ‘Big Five’ mold killers of humans: Aspergillus, Fusarium, Lomentospora, Scedosporium and Mucormycetes. Adv Appl Microbiol 110:1–61

    Article  CAS  PubMed  Google Scholar 

  46. Page L, Ullmann AJ, Schadt F et al (2020) In vitro evaluation of radiolabeled amphotericin B for molecular imaging of mold infections. Antimicrob Agents Chemother 64(7):AAC.02377-19

    Article  Google Scholar 

  47. Haas H, Petrik M, Decristoforo C (2015) An iron-mimicking, Trojan horse-entering fungi—has the time come for molecular imaging of fungal infections? PLoS Pathog 11:e1004568. https://doi.org/10.1371/journal.ppat.1004568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Petrik M, Haas H, Laverman P et al (2014) 68Ga-triacetylfusarinine C and 68Ga-ferrioxamine E for Aspergillus infection imaging: uptake specificity in various microorganisms. Mol Imaging Biol 16:102–108

    Article  PubMed  Google Scholar 

  49. Davies G, Rolle AM, Maurer A et al (2017) Towards translational ImmunoPET/MR imaging of invasive pulmonary Aspergillosis: the humanised monoclonal antibody JF5 detects Aspergillus lung infections in vivo. Theranostics 7(14):3398–3414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Henneberg S, Hasenberg A, Maurer A et al (2021) Antibody-guided in vivo imaging of Aspergillus fumigatus lung infections during antifungal azole treatment. Nat Commun 12(1):1707–1711

    Article  PubMed  PubMed Central  Google Scholar 

  51. Schwenck J, Maurer A, Beziere N et al (2022) Antibody-guided molecular imaging of Aspergillus lung infections in Leukemia patients. J Nucl Med. jnumed.121.263251

    Google Scholar 

  52. Woodham AW, Zeigler SH, Zeyang EL et al (2020) In vivo detection of antigen-specific CD8(+) T cells by immuno-positron emission tomography. Nat Methods 17(10):1025–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Song J, Cai Z, White AG et al (2015) Visualization and quantification of simian immunodeficiency virus-infected cells using non-invasive molecular imaging. J Gen Virol 96(10):3131–3142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Santangelo PJ, Rogers KA, Zurla C et al (2015) Whole-body immunoPET reveals active SIV dynamics in viremic and antiretroviral therapy-treated macaques. Nat Methods 12(5):427–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tsukrov D, McFarren A, Morgenstern A et al (2016) Combination of antiretroviral drugs and radioimmunotherapy specifically kills infected cells from HIV-infected individuals. Front Med (Lausanne) 3:41. https://doi.org/10.3389/fmed.2016.00041

    Article  PubMed  Google Scholar 

  56. Beckford-Vera DR, Flavell RR, Seo Y et al (2022) First-in-human immunoPET imaging of HIV-1 infection using 89Zr-labeled VRC01 broadly neutralizing antibody. Nat Commun 13(1):1219–1223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rodríguez-Alfonso B, Ruiz Solís S, Silva-Hernández L et al (2021) (18)F-FDG-PET/CT in SARS-CoV-2 infection and its sequelae. Rev Esp Med Nucl Imagen Mol (Engl Ed) 40(5):299–309

    PubMed  Google Scholar 

  58. Casali M, Lauri C, Altini C et al (2021) State of the art of (18)F-FDG PET/CT application in inflammation and infection: a guide for image acquisition and interpretation. Clin Translat Imaging 10:1–41

    Google Scholar 

  59. Das JP, Yeh R, Schöder (2021) Clinical utility of perfusion (Q)-single-photon emission computed tomography (SPECT)/CT for diagnosing pulmonary embolus (PE) in COVID-19 patients with a moderate to high pre-test probability of PE. Eur J Nucl Med Mol Imaging 48(3):794–799

    Article  CAS  PubMed  Google Scholar 

  60. Dadachova E, Berman JW (2015) Non-invasive nuclear imaging for localization of viral reservoirs. Nat Methods 12(5):399–400

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterina Dadachova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dadachova, E., Rangel, D.E.N. (2024). Recent Advancements in Radiopharmaceuticals for Infection Imaging. In: Thakur, A. (eds) Intracellular Pathogens. Methods in Molecular Biology, vol 2813. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3890-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3890-3_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3889-7

  • Online ISBN: 978-1-0716-3890-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation