DeepHLApan: A Deep Learning Approach for the Prediction of Peptide-HLA Binding and Immunogenicity

  • Protocol
  • First Online:
HLA Ty**

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2809))

  • 93 Accesses

Abstract

Neoantigens are crucial in distinguishing cancer cells from normal ones and play a significant role in cancer immunotherapy. The field of bioinformatics prediction for tumor neoantigens has rapidly developed, focusing on the prediction of peptide-HLA binding affinity. In this chapter, we introduce a user-friendly tool named DeepHLApan, which utilizes deep learning techniques to predict neoantigens by considering both peptide-HLA binding affinity and immunogenicity. We provide the application of DeepHLApan, along with the source code, docker version, and web-server. These resources are freely available at https://github.com/zjupgx/deephlapan and http://pgx.zju.edu.cn/deephlapan/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Lee CH, Yelensky R, Jooss K, Chan TA (2018) Update on tumor neoantigens and their utility: why it is good to be different. Trends Immunol 39:536–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lu YC, Robbins PF (2016) Cancer immunotherapy targeting neoantigens. Semin Immunol 28:22–27

    Article  CAS  PubMed  Google Scholar 

  3. Snyder A, Makarov V, Merghoub T et al (2014) Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 371:2189–2199

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rizvi NA, Hellmann MD, Snyder A et al (2016) Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 80- ) 348:124–129

    Google Scholar 

  5. Riaz N, Havel JJ, Makarov V et al (2017) Tumor and microenvironment evolution during immunotherapy with Nivolumab. Cell 171:934–949.e15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yadav M, Jhunjhunwala S, Phung QT et al (2014) Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature 515:572–576

    Article  CAS  PubMed  Google Scholar 

  7. Matsushita H, Vesely MD, Koboldt DC et al (2012) Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature 482:400–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhou Z, Wu J, Ren J et al (2021) TSNAD v2.0: a one-stop software solution for tumor-specific neoantigen detection. Comput Struct Biotechnol J 19:4510–4516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hundal J, Carreno BM, Petti AA et al (2016) pVAC-Seq: A genome-guided in silico approach to identifying tumor neoantigens. Genome Med 8:11

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhang J, Mardis ER, Maher CA (2017) INTEGRATE-neo: a pipeline for personalized gene fusion neoantigen discovery. Bioinformatics 33:555–557

    Article  CAS  PubMed  Google Scholar 

  11. Lundegaard C, Hoof I, Lund O, Nielsen M (2010) State of the art and challenges in sequence based T-cell epitope prediction. Immunome Res 6:S3

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rothbard JB, Taylor WR (1988) A sequence pattern common to T cell epitopes. EMBO J 7:93–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu G, Li D, Li Z et al (2017) PSSMHCpan: a novel PSSM-based software for predicting class I peptide-HLA binding affinity. Gigascience 6:1–11

    Article  PubMed  PubMed Central  Google Scholar 

  14. Luo H, Ye H, Ng HW et al (2016) sNebula, a network-based algorithm to predict binding between human leukocyte antigens and peptides. Sci Rep 6:32115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bui HH, Schiewe AJ, Von Grafenstein H, Haworth IS (2006) Structural prediction of peptides binding to MHC class I molecules. Proteins Struct Funct Genet 63:43–52

    Article  CAS  PubMed  Google Scholar 

  16. Mukherjee S, Bhattacharyya C, Chandra N (2016) HLaffy: estimating peptide affinities for Class-1 HLA molecules by learning position-specific pair potentials. Bioinformatics 32:2297–2305

    Article  CAS  PubMed  Google Scholar 

  17. Wang P, Sidney J, Dow C et al (2008) A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS Comput Biol 4:e1000048

    Article  PubMed  PubMed Central  Google Scholar 

  18. Karosiene E, Lundegaard C, Lund O, Nielsen M (2012) NetMHCcons: a consensus method for the major histocompatibility complex class i predictions. Immunogenetics 64:177–186

    Article  CAS  PubMed  Google Scholar 

  19. Ward JP, Gubin MM, Schreiber RD (2016) The role of neoantigens in naturally occurring and therapeutically induced immune responses to cancer. Adv Immunol 130:25–74

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Abelin JG, Keskin DB, Sarkizova S et al (2017) Mass spectrometry profiling of HLA-Associated peptidomes in mono-allelic cells enables more accurate epitope prediction. Immunity 46:315–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jurtz V, Paul S, Andreatta M et al (2017) NetMHCpan-4.0: improved peptide–MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data. J Immunol 199:3360–3368

    Article  CAS  PubMed  Google Scholar 

  22. Goff SL, Dudley ME, Citrin DE et al (2016) Randomized, prospective evaluation comparing intensity of lymphodepletion before adoptive transfer of tumor-infiltrating lymphocytes for patients with metastatic melanoma. J Clin Oncol 34:2389–2397

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chang JY, Hu ÆY, Siegel ÆE, Zhou LSÆY (2007) PAX6 increases glioma cell susceptibility to detachment and oxidative stress. J Neuro-Oncol 84:9–19

    Article  CAS  Google Scholar 

  24. Vidal LJ, Perry JK, Vouyovitch CM et al (2010) PAX5 α enhances the epithelial behavior of human mammary carcinoma cells. Mol Cancer Res 8:444–456

    Article  CAS  PubMed  Google Scholar 

  25. Liu Z, Cui Y, **ong Z et al (2019) DeepSeqPan, a novel deep convolutional neural network model for pan-specific class I HLA- peptide binding affinity prediction. Sci Rep 9:794

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wu J, Wang W, Zhang J et al (2019) DeepHLApan: A deep learning approach for neoantigen prediction considering both HLA-peptide binding and immunogenicity. Front Immunol 10:2559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China [Grant No. 31971371], the Zhejiang Provincial Natural Sciences Foundation of China [Grant No. LQ24H300005], and the China Postdoctoral Science Foundation [Grant No. 2022M712778]. We thank the Information Technology Center, State Key Lab of CAD&CG, Zhejiang University, and Alibaba Cloud for the support of computing resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhan Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wu, J., Li, J., Chen, S., Zhou, Z. (2024). DeepHLApan: A Deep Learning Approach for the Prediction of Peptide-HLA Binding and Immunogenicity. In: Boegel, S. (eds) HLA Ty**. Methods in Molecular Biology, vol 2809. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3874-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3874-3_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3873-6

  • Online ISBN: 978-1-0716-3874-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation