Patient-Derived Xenograft Models in Cancer Research: Methodology, Applications, and Future Prospects

  • Protocol
  • First Online:
Patient-Derived Xenografts

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2806))

  • 222 Accesses

Abstract

Patient-derived xenografts (PDXs) have emerged as a pivotal tool in translational cancer research, addressing limitations of traditional methods and facilitating improved therapeutic interventions. These models involve engrafting human primary malignant cells or tissues into immunodeficient mice, allowing for the investigation of cancer mechanobiology, validation of therapeutic targets, and preclinical assessment of treatment strategies. This chapter provides an overview of PDXs methodology and their applications in both basic cancer research and preclinical studies. Despite current limitations, ongoing advancements in humanized xenochimeric models and autologous immune cell engraftment hold promise for enhancing PDX model accuracy and relevance. As PDX models continue to refine and extend their applications, they are poised to play a pivotal role in sha** the future of translational cancer research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel RL, Miller KD, Fuchs HE et al (2022) Cancer statistics, 2022. CA Cancer J Clin 72(1):7–33

    Article  PubMed  Google Scholar 

  2. Friedman AA, Letai A, Fisher DE et al (2015) Precision medicine for cancer with next-generation functional diagnostics. Nat Rev Cancer 15(12):747–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Denison TA, Bae YH (2012) Tumor heterogeneity and its implication for drug delivery. J Control Release 164(2):187–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. de Bono JS, Ashworth A (2010) Translating cancer research into targeted therapeutics. Nature 467(7315):543–549

    Article  PubMed  Google Scholar 

  5. Morelli MP, Calvo E, Ordoñez E et al (2012) Prioritizing phase I treatment options through preclinical testing on personalized tumorgraft. J Clin Oncol 30(4):e45

    Article  CAS  PubMed  Google Scholar 

  6. Siolas D, Hannon GJ (2013) Patient-derived tumor xenografts: transforming clinical samples into mouse models. Cancer Res 73(17):5315–5319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hoffman RM (2015) Patient-derived orthotopic xenografts: better mimic of metastasis than subcutaneous xenografts. Nat Rev Cancer 15(8):451–452

    Article  CAS  PubMed  Google Scholar 

  8. Idrisova K, Simon H-U, Gomzikova M (2022) Role of patient-derived models of cancer in translational oncology. Cancers 15(1):139

    Article  PubMed  PubMed Central  Google Scholar 

  9. Xu C, Li X, Liu P et al (2019) Patient-derived xenograft mouse models: a high fidelity tool for individualized medicine. Oncol Lett 17(1):3–10

    CAS  PubMed  Google Scholar 

  10. Morton CL, Houghton PJ (2007) Establishment of human tumor xenografts in immunodeficient mice. Nat Protoc 2(2):247–250

    Article  CAS  PubMed  Google Scholar 

  11. Ito M, Hiramatsu H, Kobayashi K et al (2002) NOD/SCID/γ c null mouse: an excellent recipient mouse model for engraftment of human cells. Blood 100(9):3175–3182

    Article  CAS  PubMed  Google Scholar 

  12. Shultz LD, Lyons BL, Burzenski LM et al (2005) Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2Rγnull mice engrafted with mobilized human hemopoietic stem cells. J Immunol 174(10):6477–6489

    Article  CAS  PubMed  Google Scholar 

  13. Wei X, Lai Y, Li B et al (2017) CRISPR/Cas9-mediated deletion of Foxn1 in NOD/SCID/IL2rg−/− mice results in severe immunodeficiency. Sci Rep 7(1):7720

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ishikawa F, Livingston AG, Wingard JR et al (2002) An assay for long-term engrafting human hematopoietic cells based on newborn NOD/SCID/β2-microglobulinnull mice. Exp Hematol 30(5):488–494

    Article  CAS  PubMed  Google Scholar 

  15. Hiramatsu H, Nishikomori R, Heike T et al (2003) Complete reconstitution of human lymphocytes from cord blood CD34+ cells using the NOD/SCID/γcnull mice model. Blood 102(3):873–880

    Article  CAS  PubMed  Google Scholar 

  16. Agliano A, Martin-Padura I, Mancuso P et al (2008) Human acute leukemia cells injected in NOD/LtSz-scid/IL-2Rγ null mice generate a faster and more efficient disease compared to other NOD/scid-related strains. Int J Cancer 123(9):2222–2227

    Article  CAS  PubMed  Google Scholar 

  17. Covassin L, Jangalwe S, Jouvet N et al (2013) Human immune system development and survival of non-obese diabetic (NOD)-scid IL2rγ(null) (NSG) mice engrafted with human thymus and autologous haematopoietic stem cells. Clin Exp Immunol 174(3):372–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ye W, Jiang Z, Li G-X et al (2015) Quantitative evaluation of the immunodeficiency of a mouse strain by tumor engraftments. J Hematol Oncol 8(1):1–13

    Article  Google Scholar 

  19. **ao Y, Jiang Z, Li Y et al (2015) ANGPTL7 regulates the expansion and repopulation of human hematopoietic stem and progenitor cells. Haematologica 100(5):585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jiang Z, Deng M, Wei X et al (2016) Heterogeneity of CD34 and CD38 expression in acute B lymphoblastic leukemia cells is reversible and not hierarchically organized. J Hematol Oncol 9:1–5

    Article  Google Scholar 

  21. Jiang Z, Jiang X, Chen S et al (2017) Anti-GPC3-CAR T cells suppress the growth of tumor cells in patient-derived xenografts of hepatocellular carcinoma. Front Immunol 7:690

    Article  PubMed  PubMed Central  Google Scholar 

  22. Berry W, Algar E, Kumar B et al (2017) Endoscopic ultrasound-guided fine-needle aspirate-derived preclinical pancreatic cancer models reveal panitumumab sensitivity in KRAS wild-type tumors. Int J Cancer 140(10):2331–2343

    Article  CAS  PubMed  Google Scholar 

  23. Pavía-Jiménez A, Tcheuyap VT, Brugarolas J (2014) Establishing a human renal cell carcinoma tumorgraft platform for preclinical drug testing. Nat Protoc 9(8):1848–1859

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gock M, Kühn F, Mullins CS et al (2016) Tumor take rate optimization for colorectal carcinoma patient-derived xenograft models. Biomed Res Int 2016:1715053

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sailer V, von Amsberg G, Duensing S et al (2023) Experimental in vitro, ex vivo and in vivo models in prostate cancer research. Nat Rev Urol 20(3):158–178

    Article  PubMed  Google Scholar 

  26. Abdolahi S, Ghazvinian Z, Muhammadnejad S et al (2022) Patient-derived xenograft (PDX) models, applications and challenges in cancer research. J Transl Med 20(1):206

    Article  PubMed  PubMed Central  Google Scholar 

  27. Echeverria GV, Cai S, Tu Y et al (2023) Predictors of success in establishing orthotopic patient-derived xenograft models of triple negative breast cancer. NPJ Breast Cancer 9(1):2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Papapetrou EP (2016) Patient-derived induced pluripotent stem cells in cancer research and precision oncology. Nat Med 22(12):1392–1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Day C-P, Merlino G, Van Dyke T (2015) Preclinical mouse cancer models: a maze of opportunities and challenges. Cell 163(1):39–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee AS, Tang C, Rao MS et al (2013) Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat Med 19(8):998–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Garcia PL, Miller AL, Yoon KJ (2020) Patient-derived xenograft models of pancreatic cancer: overview and comparison with other types of models. Cancers 12(5):1327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Meraz IM, Majidi M, Meng F et al (2019) An improved patient-derived xenograft humanized mouse model for evaluation of lung cancer immune responses: humanized-PDX mouse model for cancer immunotherapy. Cancer Immunol Res 7(8):1267–1279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lundy J, Jenkins BJ, Saad MI (2021) A method for the establishment of human lung adenocarcinoma patient-derived xenografts in mice. Methods Mol Biol (Clifton, NJ) 2279:165–173

    Article  CAS  Google Scholar 

  34. Choi Y, Lee S, Kim K et al (2018) Studying cancer immunotherapy using patient-derived xenografts (PDXs) in humanized mice. Exp Mol Med 50(8):1–9

    PubMed  PubMed Central  Google Scholar 

  35. Duncan BB, Dunbar CE, Ishii K (2022) Applying a clinical lens to animal models of CAR-T cell therapies. Mol Ther Methods Clin Dev 27:17–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. King M, Covassin L, Brehm M et al (2009) Human peripheral blood leucocyte non-obese diabetic-severe combined immunodeficiency interleukin-2 receptor gamma chain gene mouse model of xenogeneic graft-versus-host-like disease and the role of host major histocompatibility complex. Clin Exp Immunol 157(1):104–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Drake AC, Chen Q, Chen J (2012) Engineering humanized mice for improved hematopoietic reconstitution. Cell Mol Immunol 9(3):215–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. ** J, Yoshimura K, Sewastjanow-Silva M et al (2023) Challenges and prospects of patient-derived xenografts for cancer research. Cancers 15(17):4352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ebinger S, Özdemir EZ, Ziegenhain C et al (2016) Characterization of rare, dormant, and therapy-resistant cells in acute lymphoblastic leukemia. Cancer Cell 30(6):849–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kreso A, O’Brien CA, Van Galen P et al (2013) Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science 339(6119):543–548

    Article  CAS  PubMed  Google Scholar 

  41. Lawson DA, Bhakta NR, Kessenbrock K et al (2015) Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells. Nature 526(7571):131–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Giuliano M, Herrera S, Christiny P et al (2015) Circulating and disseminated tumor cells from breast cancer patient-derived xenograft-bearing mice as a novel model to study metastasis. Breast Cancer Res 17:1–9

    Article  Google Scholar 

  43. Torphy RJ, Tignanelli CJ, Kamande JW et al (2014) Circulating tumor cells as a biomarker of response to treatment in patient-derived xenograft mouse models of pancreatic adenocarcinoma. PLoS One 9(2):e89474

    Article  PubMed  PubMed Central  Google Scholar 

  44. Williams ES, Rodriguez-Bravo V, Chippada-Venkata U et al (2015) Generation of prostate cancer patient derived xenograft models from circulating tumor cells. J Vis Exp (105):53182

    Google Scholar 

  45. Pascual G, Avgustinova A, Mejetta S et al (2017) Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature 541(7635):41–45

    Article  CAS  PubMed  Google Scholar 

  46. Powell E, Shao J, Yuan Y et al (2016) p53 deficiency linked to B cell translocation gene 2 (BTG2) loss enhances metastatic potential by promoting tumor growth in primary and metastatic sites in patient-derived xenograft (PDX) models of triple-negative breast cancer. Breast Cancer Res 18:1–16

    Article  Google Scholar 

  47. Singh SK, Hawkins C, Clarke ID et al (2004) Identification of human brain tumour initiating cells. Nature 432(7015):396–401

    Article  CAS  PubMed  Google Scholar 

  48. Lundy J, Gearing LJ, Gao H et al (2021) TLR2 activation promotes tumour growth and associates with patient survival and chemotherapy response in pancreatic ductal adenocarcinoma. Oncogene 40(41):6007–6022

    Article  CAS  PubMed  Google Scholar 

  49. Dobbin ZC, Katre AA, Steg AD et al (2014) Using heterogeneity of the patient-derived xenograft model to identify the chemoresistant population in ovarian cancer. Oncotarget 5(18):8750

    Article  PubMed  PubMed Central  Google Scholar 

  50. Mizrachi A, Shamay Y, Shah J et al (2017) Tumour-specific PI3K inhibition via nanoparticle-targeted delivery in head and neck squamous cell carcinoma. Nat Commun 8(1):14292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bagó JR, Alfonso-Pecchio A, Okolie O et al (2016) Therapeutically engineered induced neural stem cells are tumour-homing and inhibit progression of glioblastoma. Nat Commun 7(1):10593

    Article  PubMed  PubMed Central  Google Scholar 

  52. Malaney P, Nicosia SV, Davé V (2014) One mouse, one patient paradigm: new avatars of personalized cancer therapy. Cancer Lett 344(1):1–12

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed I. Saad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Aslani, S., Saad, M.I. (2024). Patient-Derived Xenograft Models in Cancer Research: Methodology, Applications, and Future Prospects. In: Saad, M.I. (eds) Patient-Derived Xenografts. Methods in Molecular Biology, vol 2806. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3858-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3858-3_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3857-6

  • Online ISBN: 978-1-0716-3858-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation