Singlet Oxygen and Superoxide Anion Radical Detection by EPR Spin Trap** in Thylakoid Preparations

  • Protocol
  • First Online:
ROS Signaling in Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2798))

  • 265 Accesses

Abstract

Reactive oxygen species (ROS) are produced by energy transfer and electron transport in plant chloroplast thylakoids at non-toxic levels under normal growth conditions, but at threatening levels under adverse or fluctuating environmental conditions. Among chloroplast ROS, singlet oxygen and superoxide anion radical, respectively, produced by photosystem II (PSII) and PSI, are known to be the major ROS under several stress conditions. Both are very unlikely to diffuse out of chloroplasts, but they are instead capable of triggering ROS-mediated chloroplast operational retrograde signalling to activate defence gene expression in concert with hormones and other molecular compounds. Therefore, their detection, identification and localization in vivo or in biological preparations is a priority for a deeper understanding of their role in (concurrent) regulation of plant growth and defence responses. Here, we present two EPR spin traps, abbreviated as TEMPD-HCl and DEPMPO, to detect and identify ROS in complex systems, such as isolated thylakoids, together with some hints and cautions to perform reliable spin trap** experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53. https://doi.org/10.3389/fenvs.2014.00053

    Article  Google Scholar 

  2. Foyer CH, Hanke G (2022) ROS production and signalling in chloroplasts: cornerstones and evolving concepts. Plant J 111:642–661. https://doi.org/10.1111/tpj.15856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Van Breusegem F, Dat JF (2006) Reactive oxygen species in plant cell death. Plant Physiol 141:384–390. https://doi.org/10.1104/pp.106.078295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Huang H, Ullah F, Zhou DX et al (2019) Mechanisms of ROS regulation of plant development and stress responses. Front Plant Sci 10:800. https://doi.org/10.3389/fpls.2019.00800

    Article  PubMed  PubMed Central  Google Scholar 

  5. Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress signalling. J Exp Bot 65:1229–1240. https://doi.org/10.1093/jxb/ert375

    Article  CAS  PubMed  Google Scholar 

  6. Arellano JB, Naqvi KR (2016) Endogenous singlet oxygen photosensitizers in plants. In: Nonell S, Flors C (eds) Singlet oxygen: applications in biosciences and nanosciences. Royal Society of Chemistry, London, pp 239–269

    Chapter  Google Scholar 

  7. Khorobrykh S, Havurinne V, Mattila H, Tyystjärvi E (2020) Oxygen and ROS in photosynthesis. Plan Theory 9:91. https://doi.org/10.3390/plants9010091

    Article  CAS  Google Scholar 

  8. Pattanayak GK, Venkataramani S, Hortensteiner S et al (2012) ACCELERATED CELL DEATH 2 suppresses mitochondrial oxidative bursts and modulates cell death in Arabidopsis. Plant J 69:589–600. https://doi.org/10.1111/j.1365-313X.2011.04814.x

    Article  CAS  PubMed  Google Scholar 

  9. Kozuleva M (2022) Recent advances in the understanding of superoxide anion radical formation in the photosynthetic electron transport chain. Acta Physiol Plant 44:1–17. https://doi.org/10.1007/s11738-022-03428-0

    Article  CAS  Google Scholar 

  10. Vanlerberghe GC (2013) The signaling role of a mitochondrial superoxide burst during stress. Plant Signal Behav 8:e22749. https://doi.org/10.4161/psb.22749

    Article  CAS  PubMed  Google Scholar 

  11. Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344. https://doi.org/10.1113/jphysiol.2003.049478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Torres MA, Dangl JL (2005) Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol 8:397–403. https://doi.org/10.1016/j.pbi.2005.05.014

    Article  CAS  PubMed  Google Scholar 

  13. Pospíšil P, Kumar A, Prasad A (2022) Reactive oxygen species in photosystem II: relevance for oxidative signaling. Photosynth Res 152:245–260. https://doi.org/10.1007/s11120-022-00922-x

    Article  CAS  PubMed  Google Scholar 

  14. Smirnoff N, Arnaud D (2019) Hydrogen peroxide metabolism and functions in plants. New Phytol 221:1197–1214. https://doi.org/10.1111/nph.15488

    Article  CAS  PubMed  Google Scholar 

  15. Corpas FJ, del Río LA, Palma JM (2019) Plant peroxisomes at the crossroad of NO and H2O2 metabolism. J Integr Plant Biol 61:803–816. https://doi.org/10.1111/jipb.12772

    Article  CAS  PubMed  Google Scholar 

  16. Breeze E, Mullineaux PM (2022) The passage of H2O2 from chloroplasts to their associated nucleus during retrograde signalling: reflections on the role of the nuclear envelope. Plan Theory 11:552. https://doi.org/10.3390/plants11040552

    Article  CAS  Google Scholar 

  17. Dietz K-J, Turkan I, Krieger-Liszkay A (2016) Redox- and reactive oxygen species-dependent signaling into and out of the photosynthesizing chloroplast. Plant Physiol 171:1541–1550. https://doi.org/10.1104/pp.16.00375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Exposito-Rodriguez M, Laissue PP, Yvon-Durocher G et al (2017) Photosynthesis-dependent H2O2 transfer from chloroplasts to nuclei provides a high-light signalling mechanism. Nat Commun 8:1–11. https://doi.org/10.1038/s41467-017-00074-w

    Article  CAS  Google Scholar 

  19. Leister D (2019) Piecing the puzzle together: the central role of reactive oxygen species and redox hubs in chloroplast retrograde signaling. Antioxid Redox Signal 30:1206–1219. https://doi.org/10.1089/ars.2017.7392

    Article  CAS  PubMed  Google Scholar 

  20. Strand DD, Livingston AK, Satoh-Cruz M et al (2015) Activation of cyclic electron flow by hydrogen peroxide in vivo. Proc Natl Acad Sci USA 112:5539–5544. https://doi.org/10.1073/pnas.1418223112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wilson PB, Estavillo GM, Field KJ et al (2009) The nucleotidase/phosphatase SAL1 is a negative regulator of drought tolerance in Arabidopsis. Plant J 58:299–317. https://doi.org/10.1111/J.1365-313X.2008.03780.x

    Article  CAS  PubMed  Google Scholar 

  22. Li M, Kim C (2022) Chloroplast ROS and stress signaling. Plant Commun 3:100264. https://doi.org/10.1016/j.xplc.2021.100264

    Article  CAS  PubMed  Google Scholar 

  23. Shapiguzov A, Vainonen JP, Hunter K et al (2019) Arabidopsis RCD1 coordinates chloroplast and mitochondrial functions through interaction with ANAC transcription factors. elife 8:e43284. https://doi.org/10.7554/ELIFE.43284

    Article  PubMed  PubMed Central  Google Scholar 

  24. Scarpeci TE, Zanor MI, Carrillo N et al (2008) Generation of superoxide anion in chloroplasts of Arabidopsis thaliana during active photosynthesis: a focus on rapidly induced genes. Plant Mol Biol 66:361–378. https://doi.org/10.1007/S11103-007-9274-4

    Article  CAS  PubMed  Google Scholar 

  25. Banwell CN, McCash EM (1994) Fundamentals of molecular spectroscopy. McGraw-Hill, New York

    Google Scholar 

  26. Peyrot F, Lajnef S, Versace DL (2022) Electron paramagnetic resonance spin trap** (EPR–ST) technique in photopolymerization processes. Catalysts 12:772. https://doi.org/10.3390/catal12070772

    Article  CAS  Google Scholar 

  27. Nosaka Y, Nosaka AY (2017) Generation and detection of reactive oxygen species in photocatalysis. Chem Rev 117:11302–11336. https://doi.org/10.1021/acs.chemrev.7b00161

    Article  CAS  PubMed  Google Scholar 

  28. Saito K, Takahashi M, Kamibayashi M et al (2009) Comparison of superoxide detection abilities of newly developed spin traps in the living cells. Free Radic Res 43:668–676. https://doi.org/10.1080/10715760902988850

    Article  CAS  PubMed  Google Scholar 

  29. Jegerschöld C, Arellano JB, Schröder WP et al (1995) Copper(II) inhibition of electron transfer through photosystem II studied by EPR spectroscopy. Biochemistry 34:12747–12754. https://doi.org/10.1021/bi00039a034

    Article  PubMed  Google Scholar 

  30. Fang D, Zhang Z, Li H et al (2016) Increased electron paramagnetic resonance signal correlates with mitochondrial dysfunction and oxidative stress in an Alzheimer’s disease mouse brain. J Alzheimers Dis 51:571–580. https://doi.org/10.3233/JAD-150917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Eisermann J, Seif-Eddine M, Roessler MM (2021) Insights into metalloproteins and metallodrugs from electron paramagnetic resonance spectroscopy. Curr Opin Chem Biol 61:114–122. https://doi.org/10.1016/J.CBPA.2020.11.005

    Article  CAS  PubMed  Google Scholar 

  32. Ruzzi M, Sartori E, Moscatelli A et al (2013) Time-resolved EPR study of singlet oxygen in the gas phase. J Phys Chem A 117:5232–5240. https://doi.org/10.1021/jp403648d

    Article  CAS  PubMed  Google Scholar 

  33. Moan J, Wold E (1979) Detection of singlet oxygen production by ESR. Nature 279:450–451. https://doi.org/10.1038/279450a0

    Article  CAS  PubMed  Google Scholar 

  34. Harbour JR, Issler SL (1982) Involvement of the azide radical in the quenching of singlet oxygen by azide anion in water. J Am Chem Soc 104:903–905. https://doi.org/10.1021/ja00367a066

    Article  CAS  Google Scholar 

  35. Sánchez-Corrionero Á, Sánchez-Vicente I, González-Pérez S et al (2017) Singlet oxygen triggers chloroplast rupture and cell death in the zeaxanthin epoxidase defective mutant aba1 of Arabidopsis thaliana under high light stress. J Plant Physiol 216:188–196. https://doi.org/10.1016/j.jplph.2017.06.009

    Article  CAS  PubMed  Google Scholar 

  36. Arellano JB, Schröder WP, Sandmann G et al (1994) Removal of nuclear contaminants and of non-specifically photosystem II-bound copper from photosystem II preparations. Physiol Plant 91:369–374. https://doi.org/10.1111/j.1399-3054.1994.tb02962.x

    Article  CAS  Google Scholar 

  37. Gutiérrez J, González-Pérez S, García-García F et al (2011) Does singlet oxygen activate cell death in Arabidopsis cell suspension cultures? Analysis of the early transcriptional defense responses to high light stress. Plant Signal Behav 6:1937–1942. https://doi.org/10.4161/psb.6.12.18264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394

    Article  CAS  Google Scholar 

  39. Hideg É, Deák Z, Hakala-Yatkin M et al (2011) Pure forms of the singlet oxygen sensors TEMP and TEMPD do not inhibit photosystem II. Biochim Biophys Acta 1807:1658–1661. https://doi.org/10.1016/j.bbabio.2011.09.009

    Article  CAS  PubMed  Google Scholar 

  40. Igarashi T, Sakurai K, Oi T et al (1999) New sensitive agents for detecting singlet oxygen by electron spin resonance spectroscopy. Free Radic Biol Med 26:1339–1345. https://doi.org/10.1016/S0891-5849(98)00291-3

    Article  CAS  PubMed  Google Scholar 

  41. Lion Y, Gandin E, Van de Vorst A (1980) On the production of nitroxide radicals by singlet oxygen reaction: an EPR study. Photochem Photobiol 31:305–309. https://doi.org/10.1111/j.1751-1097.1980.tb02545.x

    Article  CAS  Google Scholar 

  42. Prescott C, Bottle SE (2017) Biological relevance of free radicals and nitroxides. Cell Biochem Biophys 75:227–240. https://doi.org/10.1007/s12013-016-0759-0

    Article  CAS  PubMed  Google Scholar 

  43. Karoui H, Le Moigne F, Ouari O, Tordo P (2010) Nitroxide radicals: properties, synthesis and applications. In: Hicks RG (ed) Stable radicals: fundamentals and applied aspects of odd-electron compounds. Wiley, Hoboken, pp 173–229

    Chapter  Google Scholar 

  44. Fischer BB, Hideg E, Krieger-Liszkay A (2013) Production, detection, and signaling of singlet oxygen in photosynthetic organisms. Antioxid Redox Signal 18:2145–2162. https://doi.org/10.1089/ars.2012.5124

    Article  CAS  PubMed  Google Scholar 

  45. Rigo A, Argese E, Stevanato R et al (1977) A new method of detecting O2 production. Inorganica Chim Acta 24:L71–L73. https://doi.org/10.1016/S0020-1693(00)93831-3

    Article  CAS  Google Scholar 

  46. Inoue S, Kawanishi S (1989) ESR evidence for superoxide, hydroxyl radicals and singlet oxygen produced from hydrogen peroxide and nickel(II) complex of glycylglycyl-L-histidine. Biochem Biophys Res Commun 159:445–451. https://doi.org/10.1016/0006-291X(89)90012-0

    Article  CAS  PubMed  Google Scholar 

  47. Miyaji A, Gabe Y, Kohno M, Baba T (2017) Generation of hydroxyl radicals and singlet oxygen during oxidation of rhododendrol and rhododendrol-catechol. J Clin Biochem Nutr 60:86–92. https://doi.org/10.3164/jcbn.16-38

    Article  CAS  PubMed  Google Scholar 

  48. Halliwell B (1978) Superoxide-dependent formation of hydroxyl radicals in the presence of iron chelates. Is it a mechanism for hydroxyl radical production in biochemical systems? FEBS Lett 92:321–326. https://doi.org/10.1016/0014-5793(78)80779-0

    Article  CAS  PubMed  Google Scholar 

  49. Dean RL, Miskiewicz E (2003) Rates of electron transport in the thylakoid membranes of isolated, illuminated chloroplasts are enhanced in the presence of ammonium chloride. Biochem Mol Biol Educ 31:410–417. https://doi.org/10.1002/bmb.2003.494031060265

    Article  CAS  Google Scholar 

  50. Frejaville C, Karoui H, Tuccio B et al (1995) 5-(Diethoxyphosphoryl)-5-methyl-1-pyrroline N-oxide: a new efficient phosphorylated nitrone for the in vitro and in vivo spin trap** of oxygen-centered radicals. J Med Chem 38:258–265. https://doi.org/10.1021/jm00002a007

    Article  CAS  PubMed  Google Scholar 

  51. Frejaville C, Karoui H, Tuccio B et al (1994) 5-Diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide (DEPMPO): a new phosphorylated nitrone for the efficient in vitro and in vivo spin trap** of oxygen-centred radicals. J Chem Soc Chem Commun 1793–1794. https://doi.org/10.1039/C39940001793

  52. Heyno E, Gross CM, Laureau C et al (2009) Plastid alternative oxidase (PTOX) promotes oxidative stress when overexpressed in tobacco. J Biol Chem 284:31174–31180. https://doi.org/10.1074/jbc.M109.021667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kamibayashi M, Oowada S, Kameda H et al (2006) Synthesis and characterization of a practically better DEPMPO-type spin trap, 5-(2,2-dimethyl-1,3-propoxy cyclophosphoryl)-5-methyl-1-pyrroline N-oxide (CYPMPO). Free Radic Res 40:1166–1172. https://doi.org/10.1080/10715760600883254

    Article  CAS  PubMed  Google Scholar 

  54. Dikalov S, Jiang J, Mason RP (2005) Characterization of the high-resolution ESR spectra of superoxide radical adducts of 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline N-oxide (DEPMPO) and 5,5-dimethyl-1-pyrroline N-oxide (DMPO). Analysis of conformational exchange. Free Radic Res 39:825–836. https://doi.org/10.1080/10715760500155688

    Article  CAS  PubMed  Google Scholar 

  55. Barbati S, Clément JL, Olive G et al (1997) 31P labeled cyclic nitrones: a new class of spin traps for free radicals in biological milieu. In: Minisci F (ed) Free radicals in biology and environment. NATO ASI series, vol 27. Springer, Dordrecht, pp 39–47

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank Dr. Anja Krieger-Liszkay for her careful and critical reading. The research was funded by MCIN/AEI/10.13039/501100011033 (Project n° PID2019-107154RB-100) and the regional government of Castilla y León (Project n° CSI260P20). The Project “CLU-2019–05—IRNASA/CSIC Unit of Excellence” funded by the Junta de Castilla y León and co-financed by the European Union (ERDF, “Europe Drives Our Growth”) and the CSIC Interdisciplinary Thematic Platform (PTI) Optimization of Agricultural and Forestry Systems (PTI-AGROFOR) are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan B. Arellano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bendou, O., Bueno-Ramos, N., Marcos-Barbero, E.L., Morcuende, R., Arellano, J.B. (2024). Singlet Oxygen and Superoxide Anion Radical Detection by EPR Spin Trap** in Thylakoid Preparations. In: Corpas, F.J., Palma, J.M. (eds) ROS Signaling in Plants . Methods in Molecular Biology, vol 2798. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3826-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3826-2_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3825-5

  • Online ISBN: 978-1-0716-3826-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation