Conformational Dynamic Studies of Prokaryotic Potassium Channels Explored by Homo-FRET Methodologies

  • Protocol
  • First Online:
Potassium Channels

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2796))

  • 180 Accesses

Abstract

Fluorescence techniques have been widely used to shed light over the structure–function relationship of potassium channels for the last 40–50 years. In this chapter, we describe how a Förster resonance energy transfer between identical fluorophores (homo-FRET) approach can be applied to study the gating behavior of the prokaryotic channel KcsA. Two different gates have been described to control the K+ flux across the channel’s pore, the helix-bundle crossing and the selectivity filter, located at the opposite sides of the channel transmembrane section. Both gates can be studied individually or by using a double-reporter system. Due to its homotetrameric structural arrangement, KcsA presents a high degree of symmetry that fulfills the first requisite to calculate intersubunit distances through this technique. The results obtained through this work have helped to uncover the conformational plasticity of the selectivity filter under different experimental conditions and the importance of its allosteric coupling to the opening of the activation (inner) gate. This biophysical approach usually requires low protein concentration and presents high sensitivity and reproducibility, complementing the high-resolution structural information provided by X-ray crystallography, cryo-EM, and NMR studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
GBP 34.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 159.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 199.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Renart ML, Barrera FN, Molina ML et al (2006) Effects of conducting and blocking ions on the structure and stability of the potassium channel KcsA. J Biol Chem 281:29905–29915. https://doi.org/10.1074/jbc.M602636200

    Article  CAS  PubMed  Google Scholar 

  2. Renart ML, Giudici AM, Díaz-García C et al (2020) Modulation of function, structure and clustering of K+ channels by lipids: lessons learnt from KcsA. Int J Mol Sci 21:2554. https://doi.org/10.3390/ijms21072554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Molina ML, Barrera FN, Fernández AM et al (2006) Clustering and coupled gating modulate the activity in KcsA, a potassium channel model. J Biol Chem 281:18837–18848. https://doi.org/10.1074/jbc.M600342200

    Article  CAS  PubMed  Google Scholar 

  4. Krishnan MN, Bingham J-P, Lee SH et al (2005) Functional role and affinity of inorganic cations in stabilizing the tetrameric structure of the KcsA K+ channel. J Gen Physiol 126:271–283. https://doi.org/10.1085/jgp.200509323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lerner E, Barth A, Hendrix J et al (2021) FRET-based dynamic structural biology: challenges, perspectives and an appeal for open-science practices. elife 10:e60416. https://doi.org/10.7554/eLife.60416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer, Boston

    Book  Google Scholar 

  7. Valeur B, Berberan-Santos MN (2012) Molecular fluorescence: principles and applications, 2nd edn. Wiley, London

    Book  Google Scholar 

  8. Stryer L, Haugland RP (1967) Energy transfer: a spectroscopic ruler. Proc Natl Acad Sci 58:719–726. https://doi.org/10.1073/pnas.58.2.719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kalinin S, Johansson LB-Å (2004) Utility and considerations of donor–donor energy migration as a fluorescence method for exploring protein structure-function. J Fluoresc 14:681–691. https://doi.org/10.1023/B:JOFL.0000047218.51768.59

    Article  CAS  PubMed  Google Scholar 

  10. Thaler C, Blank P, Koushik S, Vogel S (2009) Time-resolved fluorescence anisotropy. In: Flim microscopy in biology and medicine. Chapman and Hall/CRC, pp. 245–320

    Google Scholar 

  11. Majumdar A, Mukhopadhyay S (2018) Fluorescence depolarization kinetics to study the conformational preference, structural plasticity, binding, and assembly of intrinsically disordered proteins. Methods Enzymol 611:347–381. https://doi.org/10.1016/bs.mie.2018.09.031

  12. Ameloot M, van de Ven M, Acuña AU, Valeur B (2013) Fluorescence anisotropy measurements in solution: methods and reference materials (IUPAC technical report). Pure Appl Chem 85:589–608. https://doi.org/10.1351/PAC-REP-11-11-12

    Article  CAS  Google Scholar 

  13. Millar DP (2000) Time-resolved fluorescence methods for analysis of DNA-protein interactions. Methods Enzymol 323:442–459. https://doi.org/10.1016/S0076-6879(00)23377-6

  14. Cardoso S, Berberan-Santos MN (2021) Reversible electronic energy transfer (homo-FRET) in cyclic molecular and supramolecular systems: fluorescence anisotropy decays for the isotropic interaction. J Phys Chem A 125:8476–8481. https://doi.org/10.1021/acs.jpca.1c04975

    Article  CAS  PubMed  Google Scholar 

  15. Renart ML, Giudici AM, Poveda JA et al (2019) Conformational plasticity in the KcsA potassium channel pore helix revealed by homo-FRET studies. Sci Rep 9:6215. https://doi.org/10.1038/s41598-019-42405-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Coutinho A, Díaz-García C, Giudici AM, Renart ML (2022) Insights into the conformational dynamics of potassium channels using homo-FRET approaches, pp 443–478. In R. Šachl, M. Amaro (eds.), Fluorescence Spectroscopy and Microscopy in Biology, Springer Ser Fluoresc (2023). https://doi.org/10.1007/4243_2022_24

  17. Runnels LW, Scarlata SF (1995) Theory and application of fluorescence homotransfer to melittin oligomerization. Biophys J 69:1569–1583. https://doi.org/10.1016/S0006-3495(95)80030-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bader AN, Hoetzl S, Hofman EG et al (2011) Homo-FRET imaging as a tool to quantify protein and lipid clustering. ChemPhysChem 12:475–483. https://doi.org/10.1002/cphc.201000801

    Article  CAS  PubMed  Google Scholar 

  19. Blackman SM, Piston DW, Beth AH (1998) Oligomeric state of human erythrocyte band 3 measured by fluorescence resonance energy homotransfer. Biophys J 75:1117–1130. https://doi.org/10.1016/S0006-3495(98)77601-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Melo AM, Fedorov A, Prieto M, Coutinho A (2014) Exploring homo-FRET to quantify the oligomer stoichiometry of membrane-bound proteins involved in a cooperative partition equilibrium. Phys Chem Chem Phys 16:18105–18117. https://doi.org/10.1039/C4CP00060A

    Article  CAS  PubMed  Google Scholar 

  21. Bergström F, Hägglöf P, Karolin J et al (1999) The use of site-directed fluorophore labeling and donor–donor energy migration to investigate solution structure and dynamics in proteins. Proc Natl Acad Sci 96:12477–12481. https://doi.org/10.1073/pnas.96.22.12477

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lillo MP, Cañadas O, RobertE D, Acuña AU (2002) Location and properties of the taxol binding center in microtubules: a picosecond laser study with fluorescent Taxoids. Biochemistry 41:12436–12449. https://doi.org/10.1021/bi0261793

    Article  CAS  PubMed  Google Scholar 

  23. Thaler C, Koushik SV, Puhl HL et al (2009) Structural rearrangement of CaMKIIα catalytic domains encodes activation. Proc Natl Acad Sci 106:6369–6374. https://doi.org/10.1073/pnas.0901913106

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kayser V, Turton DA, Aggeli A et al (2004) Energy migration in novel pH-triggered self-assembled β-sheet ribbons. J Am Chem Soc 126:336–343. https://doi.org/10.1021/ja035340+

    Article  CAS  PubMed  Google Scholar 

  25. Schrempf H, Schmidt O, Kümmerlen R et al (1995) A prokaryotic potassium ion channel with two predicted transmembrane segments from Streptomyces lividans. EMBO J 14:5170–5178. https://doi.org/10.1002/j.1460-2075.1995.tb00201.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Doyle DA, Cabral JM, Pfuetzner RA et al (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77. https://doi.org/10.1126/science.280.5360.69

    Article  CAS  PubMed  Google Scholar 

  27. Zhou Y, Morais-Cabral JH, Kaufman A, MacKinnon R (2001) Chemistry of ion coordination and hydration revealed by a K+ channel–Fab complex at 2.0 Å resolution. Nature 414:43–48. https://doi.org/10.1038/35102009

    Article  CAS  PubMed  Google Scholar 

  28. LeMasurier M, Heginbotham L, Miller C (2001) KcsA: It’s a Potassium Channel. J Gen Physiol 118:303–314. https://doi.org/10.1085/jgp.118.3.303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Uysal S, Vásquez V, Tereshko V et al (2009) Crystal structure of full-length KcsA in its closed conformation. Proc Natl Acad Sci 106:6644–6649. https://doi.org/10.1073/pnas.0810663106

    Article  PubMed  PubMed Central  Google Scholar 

  30. Morais-Cabral JH, Zhou Y, MacKinnon R (2001) Energetic optimization of ion conduction rate by the K+ selectivity filter. Nature 414:37–42. https://doi.org/10.1038/35102000

    Article  CAS  PubMed  Google Scholar 

  31. Lockless SW, Zhou M, MacKinnon R (2007) Structural and thermodynamic properties of selective ion binding in a K+ channel. PLoS Biol 5:e121. https://doi.org/10.1371/journal.pbio.0050121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gao L, Mi X, Paajanen V et al (2005) Activation-coupled inactivation in the bacterial potassium channel KcsA. Proc Natl Acad Sci 102:17630–17635. https://doi.org/10.1073/pnas.0505158102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cordero-Morales JF, Jogini V, Chakrapani S, Perozo E (2011) A multipoint hydrogen-bond network underlying KcsA C-type inactivation. Biophys J 100:2387–2393. https://doi.org/10.1016/j.bpj.2011.01.073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xu Y, McDermott AE (2019) Inactivation in the potassium channel KcsA. J Struct Biol X 3:100009. https://doi.org/10.1016/j.yjsbx.2019.100009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kiss L, Korn SJ (1998) Modulation of C-type inactivation by K+ at the potassium channel selectivity filter. Biophys J 74:1840–1849. https://doi.org/10.1016/S0006-3495(98)77894-4

  36. Ogielska EM, Aldrich RW (1999) Functional consequences of a decreased potassium affinity in a potassium channel pore. J Gen Physiol 113:347–358. https://doi.org/10.1085/jgp.113.2.347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hsu H, Huang E, Yang XC et al (1993) Slow and incomplete inactivations of voltage-gated channels dominate encoding in synthetic neurons. Biophys J 65:1196–1206. https://doi.org/10.1016/S0006-3495(93)81153-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Montoya E, Lourdes Renart M, Marcela Giudici A et al (2017) Differential binding of monovalent cations to KcsA: deciphering the mechanisms of potassium channel selectivity. Biochim Biophys Acta Biomembr 1859:779–788. https://doi.org/10.1016/j.bbamem.2017.01.014

    Article  CAS  PubMed  Google Scholar 

  39. Renart ML, Montoya E, Fernández AM et al (2012) Contribution of ion binding affinity to ion selectivity and permeation in KcsA, a model potassium channel. Biochemistry 51:3891–3900. https://doi.org/10.1021/bi201497n

    Article  CAS  PubMed  Google Scholar 

  40. Giudici AM, Díaz-García C, Renart ML et al (2021) Tetraoctylammonium, a long chain quaternary ammonium blocker, promotes a noncollapsed, resting-like inactivated state in KcsA. Int J Mol Sci 22:490. https://doi.org/10.3390/ijms22020490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ahern CA, Pless SA (2015) Novel chemical tools to study ion channel biology. Springer, New York

    Book  Google Scholar 

  42. Nanda JS, Lorsch JR (2014) Labeling of a protein with fluorophores using maleimide derivitization. In: Methods in enzymology, pp 79–86. https://doi.org/10.1016/B978-0-12-420070-8.00007-6

  43. Akabas MH (2015) Cysteine modification: probing channel structure, function and conformational change. In: Advances in experimental medicine and biology, pp 25–54. https://doi.org/10.1007/978-1-4939-2845-3_3

  44. Sadler EE, Kapanidis AN, Tucker SJ (2016) Solution-based single-molecule FRET studies of K+ channel gating in a lipid bilayer. Biophys J 110:2663–2670. https://doi.org/10.1016/j.bpj.2016.05.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Díaz-García C, Renart ML, Poveda JA et al (2021) Probing the structural dynamics of the activation gate of KcsA using homo-FRET measurements. Int J Mol Sci 22:11954. https://doi.org/10.3390/ijms222111954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Perozo E, Cortes DM, Cuello LG (1998) Three-dimensional architecture and gating mechanism of a K+ channel studied by EPR spectroscopy. Nat Struct Biol 5:459–469. https://doi.org/10.1038/nsb0698-459

    Article  CAS  PubMed  Google Scholar 

  47. Tilegenova C, Cortes DM, Cuello LG (2017) Hysteresis of KcsA potassium channel’s activation– deactivation gating is caused by structural changes at the channel’s selectivity filter. Proc Natl Acad Sci 114:3234–3239. https://doi.org/10.1073/pnas.1618101114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Perozo E, Marien D, Cortes, Cuello LG (1999) Structural rearrangements underlying K+ -channel activation gating. Science 285:73–78. https://doi.org/10.1126/science.285.5424.73

    Article  CAS  PubMed  Google Scholar 

  49. Blunck R, Cordero-Morales JF, Cuello LG et al (2006) Detection of the opening of the bundle crossing in KcsA with fluorescence lifetime spectroscopy reveals the existence of two gates for ion conduction. J Gen Physiol 128:569–581. https://doi.org/10.1085/jgp.200609638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gupta K, Toombes GE, Swartz KJ (2019) Exploring structural dynamics of a membrane protein by combining bioorthogonal chemistry and cysteine mutagenesis. elife 8. https://doi.org/10.7554/eLife.50776

  51. Faure É, Starek G, McGuire H et al (2012) A limited 4 Å radial displacement of the S4-S5 linker is sufficient for internal gate closing in Kv channels. J Biol Chem 287:40091–40098. https://doi.org/10.1074/jbc.M112.415497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Matulef K, Komarov AG, Costantino CA, Valiyaveetil FI (2013) Using protein backbone mutagenesis to dissect the link between ion occupancy and C-type inactivation in K+ channels. Proc Natl Acad Sci 110:17886–17891. https://doi.org/10.1073/pnas.1314356110

    Article  PubMed  PubMed Central  Google Scholar 

  53. Devaraneni PK, Komarov AG, Costantino CA et al (2013) Semisynthetic K+ channels show that the constricted conformation of the selectivity filter is not the C-type inactivated state. Proc Natl Acad Sci 110:15698–15703. https://doi.org/10.1073/pnas.1308699110

    Article  PubMed  PubMed Central  Google Scholar 

  54. Matulef K, Annen AW, Nix JC, Valiyaveetil FI (2016) Individual ion binding sites in the K+ channel play distinct roles in C-type inactivation and in recovery from inactivation. Structure 24:750–761. https://doi.org/10.1016/j.str.2016.02.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Giudici AM, Renart ML, Coutinho A et al (2022) Molecular events behind the selectivity and inactivation properties of model NaK-derived ion channels. Int J Mol Sci 23:9246. https://doi.org/10.3390/ijms23169246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wahl P (1979) Analysis of fluorescence anisotropy decays by a least square method. Biophys Chem 10:91–104. https://doi.org/10.1016/0301-4622(79)80009-5

    Article  CAS  PubMed  Google Scholar 

  57. Johnson I, Spence MTZ (2010) Molecular probes handbook, a guide to fluorescent probes and labeling technologies, 11th edn. Life Technologies

    Google Scholar 

  58. Pantazis A, Westerberg K, Althoff T et al (2018) Harnessing photoinduced electron transfer to optically determine protein sub-nanoscale atomic distances. Nat Commun 9:4738. https://doi.org/10.1038/s41467-018-07218-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ogawa M, Kosaka N, Choyke PL, Kobayashi H (2009) H-type dimer formation of fluorophores: a mechanism for activatable, in vivo optical molecular imaging. ACS Chem Biol 4:535–546. https://doi.org/10.1021/cb900089j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Donaphon B, Bloom LB, Levitus M (2018) Photophysical characterization of interchromophoric interactions between rhodamine dyes conjugated to proteins. Methods Appl Fluoresc 6:045004. https://doi.org/10.1088/2050-6120/aad20f

    Article  CAS  PubMed  Google Scholar 

  61. Molina ML, Encinar JA, Barrera FN et al (2004) Influence of C-terminal protein domains and protein-lipid interactions on tetramerization and stability of the potassium channel KcsA. Biochemistry 43:14924–14931. https://doi.org/10.1021/bi048889+

    Article  CAS  PubMed  Google Scholar 

  62. Giudici AM, Molina ML, Ayala JL, et al (2013) Detergent-labile, supramolecular assemblies of KcsA: relative abundance and interactions involved Biochim Biophys Acta Biomembr 1828:193–200. https://doi.org/10.1016/j.bbamem.2012.09.020

  63. Stryer L (1978) Fluorescence energy transfer as a spectroscopic ruler. Annu Rev Biochem 47:819–846. https://doi.org/10.1146/annurev.bi.47.070178.004131

  64. Würth C, Grabolle M, Pauli J et al (2013) Relative and absolute determination of fluorescence quantum yields of transparent samples. Nat Protoc 8:1535–1550. https://doi.org/10.1038/nprot.2013.087

    Article  CAS  PubMed  Google Scholar 

  65. Babul J, Stellwagen E (1969) Measurement of protein concentration with interferences optics. Anal Biochem 28:216–221. https://doi.org/10.1016/0003-2697(69)90172-9

    Article  CAS  PubMed  Google Scholar 

  66. Poveda JA, Prieto M, Encinar JA et al (2003) Intrinsic tyrosine fluorescence as a tool to study the interaction of the shaker B “ball” peptide with anionic membranes. Biochemistry 42:7124–7132. https://doi.org/10.1021/bi027183h

    Article  CAS  PubMed  Google Scholar 

  67. Visser A, Vysotski ES, Lee J. http://photobiology.info/Experiments/Biolum-Expt.html

  68. Strop P, Brunger AT (2005) Refractive index-based determination of detergent concentration and its application to the study of membrane proteins. Protein Sci 14:2207–2211. https://doi.org/10.1110/ps.051543805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cross AJ, Fleming GR (1984) Analysis of time-resolved fluorescence anisotropy decays. Biophys J 46:45–56. https://doi.org/10.1016/S0006-3495(84)83997-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cortes DM, Cuello LG, Perozo E (2001) Molecular architecture of full-length KcsA. J Gen Physiol 117:165–180. https://doi.org/10.1085/jgp.117.2.165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Han JC, Han GY (1994) A procedure for quantitative determination of Tris(2-Carboxyethyl)phosphine, an odorless reducing agent more stable and effective than dithiothreitol. Anal Biochem 220:5–10. https://doi.org/10.1006/abio.1994.1290

    Article  CAS  PubMed  Google Scholar 

  72. Valeur B, Weber G (1977) Resolution Of The Fluorescence Excitation Spectrum Of Indole into the 1 L a and 1 L b excitation bands. Photochem Photobiol 25:441–444. https://doi.org/10.1111/j.1751-1097.1977.tb09168.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Aleksander Fedorov, Manuel Prieto, and Mário Nuno Berberan-Santos from iBB (Portugal) and Clara Díaz-García, Ana Marcela Giudici, José Manuel González-Ros, and Eva Martínez from IDiBE (Spain) for all the extensive and wise contributions to the work described here. This work was partly supported by grants PGC2018-093505-B-I00 from the Spanish “Ministerio de Ciencia e Innovación”/FEDER, U.E., and national funds from FCT Fundação para a Ciência e a Tecnologia, I.P., under the scope of the projects UIDB/04565/2020 and UIDP/04565/2020 of the Research Unit Institute for Bioengineering and Biosciences (iBB) and the project LA/P/0140/2020 of the Associate Laboratory Institute for Health and Bioeconomy (i4HB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Lourdes Renart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Coutinho, A., Poveda, J.A., Renart, M.L. (2024). Conformational Dynamic Studies of Prokaryotic Potassium Channels Explored by Homo-FRET Methodologies. In: Furini, S. (eds) Potassium Channels. Methods in Molecular Biology, vol 2796. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3818-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3818-7_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3817-0

  • Online ISBN: 978-1-0716-3818-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation