High Throughput Phosphoglycolate Phosphatase Activity Assay Using Crude Leaf Extract and Recombinant Enzyme to Determine Kinetic Parameters Km and Vmax Using a Microplate Reader

  • Protocol
  • First Online:
Photorespiration

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2792))

  • 102 Accesses

Abstract

Determining enzyme activities involved in photorespiration, either in a crude plant tissue extract or in a preparation of a recombinant enzyme, is time-consuming, especially when large number of samples need to be processed. This chapter presents a phosphoglycolate phosphatase (PGLP) activity assay that is adapted for use in a 96-well microplate format. The microplate format for the assay requires fewer enzymes and reagents and allows rapid and less expensive measurement of PGLP enzyme activity. The small volume of reaction mix in a 96-well microplate format enables the determination of PGLP enzyme activity for screening many plant samples, multiple enzyme activities using the same protein extract, and/or identifying kinetic parameters for a recombinant enzyme. To assist in preparing assay reagents, we also present an R Shiny buffer preparation app for PGLP and other photorespiratory enzyme activities and a Km and Vmax calculation app.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bathellier C, Yu L-J, Farquhar GD, Coote ML, Lorimer GH, Tcherkez G (2020) Ribulose 1,5-bisphosphate carboxylase/oxygenase activates O2 by electron transfer. Proc Natl Acad Sci USA 117:24234–24242. https://doi.org/10.1073/pnas.2008824117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Somerville CR, Ogren WL (1979) A phosphoglycolate phosphatase-deficient mutant of Arabidopsis. Nature 280:833–836. https://doi.org/10.1038/280833a0

    Article  CAS  Google Scholar 

  3. Suzuki K, Marek LF, Spalding MH (1990) A photorespiratory mutant of Chlamydomonas reinhardtii. Plant Physiol 93:231–237. https://doi.org/10.1104/pp.93.1.231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Timm S, Woitschach F, Heise C, Hagemann M, Bauwe H (2019) Faster removal of 2-phosphoglycolate through photorespiration improves abiotic stress tolerance of Arabidopsis. Plants (Basel) 8:563. https://doi.org/10.3390/plants8120563

    Article  CAS  PubMed  Google Scholar 

  5. Gregory LM, Roze LV, Walker BJ (2023) Increased activity of core photorespiratory enzymes and CO2 transfer conductances are associated with higher and more optimal photosynthetic rates under elevated temperatures in the extremophile Rhazya stricta. Plant Cell Environ 46(12):3704–3720

    Google Scholar 

  6. Ni-NTA Spin Kit Handbook – QIAGEN. http://www.qiagen.com>resources>download.PDF

    Google Scholar 

  7. Christeller JT, Tolbert NE (1978) Phosphoglycolate phosphatase. Purification and properties. J Biol Chem 253:1780–1785

    Article  CAS  PubMed  Google Scholar 

  8. Hardy P, Baldy P (1986) Corn phosphoglycolate phosphatase: purification and properties. Planta 168:245–252. https://doi.org/10.1007/BF00402970

    Article  CAS  PubMed  Google Scholar 

  9. Husic HD, Tolbert NE (1984) Anion and divalent cation activation of phosphoglycolate phosphatase from leaves. Arch Biochem Biophys 229:64–72. https://doi.org/10.1016/0003-9861(84)90130-9

    Article  CAS  PubMed  Google Scholar 

  10. Belanger FC, Ogren WL (1987) Phosphoglycolate phosphatase: purification and preparation of antibodies. Photosynth Res 14:3–13. https://doi.org/10.1007/BF00019588

    Article  CAS  PubMed  Google Scholar 

  11. Norman EG, Colman B (1991) Purification and characterization of phosphoglycolate phosphatase from the cyanobacterium Coccochloris peniocystis1. Plant Physiol 95:693–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schwarte S, Bauwe H (2007) Identification of the photorespiratory 2-Phosphoglycolate phosphatase, PGLP1, in Arabidopsis. Plant Physiol 144:1580–1586. https://doi.org/10.1104/pp.107.099192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shen J, Zeng Y, Zhuang X, Sun L, Yao X, Pimpl P, Jiang L (2013) Organelle pH in the Arabidopsis endomembrane system. Mol Plant 6:1419–1437. https://doi.org/10.1093/mp/sst079

    Article  CAS  PubMed  Google Scholar 

  14. Su-Cheng P, Chung-Cheng Y, Riley JP (1990) Effects of acidity and molybdate concentration on the kinetics of the formation of the phosphoantimonylmolybdenum blue complex. Anal Chim Acta 229:115–120. https://doi.org/10.1016/S0003-2670(00)85116-8

    Article  Google Scholar 

  15. Quick Start™Bradford Protein Assay. https://www.bio-rad.com/webroot/web/pdf/lsr/literature/4110065A.pdf

Download references

Acknowledgments

This work was supported by the US Department of Energy Office of Science, Basic Energy Sciences under Award DE- FG02-91ER20021 and the National Science Foundation under grant number 2030337. The work conducted by the U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, is supported under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berkley J. Walker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Roze, L.V., Johnson, A., Gregory, L.M., Tejera-Nieves, M., Walker, B.J. (2024). High Throughput Phosphoglycolate Phosphatase Activity Assay Using Crude Leaf Extract and Recombinant Enzyme to Determine Kinetic Parameters Km and Vmax Using a Microplate Reader. In: Walker, B.J. (eds) Photorespiration. Methods in Molecular Biology, vol 2792. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3802-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3802-6_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3801-9

  • Online ISBN: 978-1-0716-3802-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation