Preparation of Bioconjugates of Chimeric M13 Phage and Gold Nanorods

  • Protocol
  • First Online:
Phage Engineering and Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2793))

  • 309 Accesses

Abstract

Phage-nanomaterial conjugates are functional bio-nanofibers with various applications. While phage display can select for phages with desired genetically encoded functions and properties, nanomaterials can endow the phages with additional features at nanoscale dimensions. Therefore, combining phages with nanotechnology can construct bioconjugates with unique characteristics. One strategy for filamentous phages is to adsorb nanoparticles onto the side wall, composed of pVIII subunits, through electrostatic interactions. However, a noncovalent approach may cause offloading if the environment changes, potentially causing side effects especially for in vivo applications. Therefore, building stable phage-bioconjugates is an important need. We previously reported the construction of chimeric M13 phage conjugated with gold nanorods, named “phanorods,” without weakening the binding affinity to the bacterial host cells. Herein, we give a detailed protocol for preparing the chimeric M13 phage and covalently conjugating gold nanorods to the phage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith GP, Petrenko VA (1997) Phage display. Chem Rev 97:391–410

    Article  CAS  PubMed  Google Scholar 

  2. Smith GP (2019) Phage display: simple evolution in a petri dish (Nobel lecture). Angew Chem Int Ed 58:14428–14437

    Article  CAS  Google Scholar 

  3. Wang R, Li H-D, Cao Y, Wang Z-Y, Yang T, Wang J-H (2023) M13 phage: a versatile building block for a highly specific analysis platform. Anal Bioanal Chem 415:3927

    Article  CAS  PubMed  Google Scholar 

  4. Molek P, Bratkovič T (2015) Bacteriophages as scaffolds for bipartite display: designing Swiss Army knives on a nanoscale. Bioconjug Chem 26:367–378

    Article  CAS  PubMed  Google Scholar 

  5. Wang X, Zhu X, Wang D, Li X, Wang J, Yin G, Huang Z, Pu X (2023) Identification of a specific phage as growth factor alternative promoting the recruitment and differentiation of MSCs in bone tissue regeneration. ACS Biomater Sci Eng 9:2426–2437

    Article  CAS  PubMed  Google Scholar 

  6. Owens AE, Iannuzzelli JA, Gu Y, Fasan R (2020) MOrPH-PhD: an integrated phage display platform for the discovery of functional genetically encoded peptide macrocycles. ACS Central Sci 6:368–381

    Article  CAS  Google Scholar 

  7. Chen M, Samuelson JC (2016) A DsbA-deficient periplasm enables functional display of a protein with redox-sensitive folding on M13 phage. Biochemistry 55:3175–3179

    Article  CAS  PubMed  Google Scholar 

  8. Orner BP, Liu L, Murphy RM, Kiessling LL (2006) Phage display affords peptides that modulate β-amyloid aggregation. J Am Chem Soc 128:11882–11889

    Article  CAS  PubMed  Google Scholar 

  9. Wu C-H, Liu IJ, Lu R-M, Wu H-C (2016) Advancement and applications of peptide phage display technology in biomedical science. J Biomed Sci 23:8

    Article  PubMed  PubMed Central  Google Scholar 

  10. Smeal SW, Schmitt MA, Pereira RR, Prasad A, Fisk JD (2017) Simulation of the M13 life cycle I: assembly of a genetically-structured deterministic chemical kinetic simulation. Virology 500:259–274

    Article  CAS  PubMed  Google Scholar 

  11. Jaroszewicz W, Morcinek-Orłowska J, Pierzynowska K, Gaffke L, Węgrzyn G (2021) Phage display and other peptide display technologies. FEMS Microbiol Rev 46

    Google Scholar 

  12. Mohan K, Weiss GA (2014) Dual genetically encoded phage-displayed ligands. Anal Biochem 453:1–3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Løset GÅ, Bogen B, Sandlie I (2011) Expanding the versatility of phage display I: efficient display of peptide-tags on protein VII of the filamentous phage. PLoS One 6:e14702

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bernard JML, Francis MB (2014) Chemical strategies for the covalent modification of filamentous phage. Front Microbiol 5

    Google Scholar 

  15. Carmody CM, Goddard JM, Nugen SR (2021) Bacteriophage capsid modification by genetic and chemical methods. Bioconjug Chem 32:466–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Davenport BJ, Catala A, Weston SM, Johnson RM, Ardanuy J, Hammond HL, Dillen C, Frieman MB, Catalano CE, Morrison TE (2022) Phage-like particle vaccines are highly immunogenic and protect against pathogenic coronavirus infection and disease. npj Vaccines 7:57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hess GT, Cragnolini JJ, Popp MW, Allen MA, Dougan SK, Spooner E, Ploegh HL, Belcher AM, Guimaraes CP (2012) M13 bacteriophage display framework that allows Sortase-mediated modification of surface-accessible phage proteins. Bioconjug Chem 23:1478–1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mohan K, Weiss GA (2016) Chemically modifying viruses for diverse applications. ACS Chem Biol 11:1167–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li K, Chen Y, Li S, Nguyen HG, Niu Z, You S, Mello CM, Lu X, Wang Q (2010) Chemical modification of M13 bacteriophage and its application in cancer cell imaging. Bioconjug Chem 21:1369–1377

    Article  CAS  PubMed  Google Scholar 

  20. Peng H, Borg RE, Nguyen ABN, Chen IA (2020) Chimeric phage nanoparticles for rapid characterization of bacterial pathogens: detection in complex biological samples and determination of antibiotic sensitivity. Acs Sensors 5:1491–1499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hess GT, Guimaraes CP, Spooner E, Ploegh HL, Belcher AM (2013) Orthogonal labeling of M13 minor capsid proteins with DNA to self-assemble end-to-end multiphage structures. ACS Synth Biol 2:490–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Peivandi A, Tian L, Mahabir R, Hosseinidoust Z (2019) Hierarchically structured, self-healing, fluorescent, bioactive hydrogels with self-organizing bundles of phage Nanofilaments. Chem Mater 31:5442–5449

    Article  CAS  Google Scholar 

  23. Souza GR, Christianson DR, Staquicini FI, Ozawa MG, Snyder EY, Sidman RL, Miller JH, Arap W, Pasqualini R (2006) Networks of gold nanoparticles and bacteriophage as biological sensors and cell-targeting agents. Proc Natl Acad Sci 103:1215–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim K-H, Nguyen TM, Ha S-H, Choi EJ, Kim Y, Kim W-G, Oh J-W, Kim J-M (2020) M13 bacteriophage-assisted morphological engineering of crack-based sensors for highly sensitive and wide linear range strain sensing. ACS Appl Mater Int 12:45590–45601

    Article  CAS  Google Scholar 

  25. Lee JH, Fan B, Samdin TD, Monteiro DA, Desai MS, Scheideler O, ** H-E, Kim S, Lee S-W (2017) Phage-based structural color sensors and their pattern recognition sensing system. ACS Nano 11:3632–3641

    Article  CAS  PubMed  Google Scholar 

  26. Tsedev U, Lin C-W, Hess GT, Sarkaria JN, Lam FC, Belcher AM (2022) Phage particles of controlled length and genome for in vivo targeted glioblastoma imaging and therapeutic delivery. ACS Nano 16:11676–11691

    Article  CAS  PubMed  Google Scholar 

  27. Deutscher SL (2010) Phage display in molecular imaging and diagnosis of cancer. Chem Rev 110:3196–3211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Monahan M, Homer M, Zhang S, Zheng R, Chen C-L, De Yoreo J, Cossairt BM (2022) Impact of nanoparticle size and surface chemistry on Peptoid self-assembly. ACS Nano 16:8095–8106

    Article  CAS  PubMed  Google Scholar 

  29. Jiang Y, McNeill J (2017) Light-harvesting and amplified energy transfer in conjugated polymer nanoparticles. Chem Rev 117:838–859

    Article  CAS  PubMed  Google Scholar 

  30. Chakraborty A, Boer JC, Selomulya C, Plebanski M (2018) Amino acid functionalized inorganic nanoparticles as cutting-edge therapeutic and diagnostic agents. Bioconjug Chem 29:657–671

    Article  CAS  PubMed  Google Scholar 

  31. Ha M, Kim J-H, You M, Li Q, Fan C, Nam J-M (2019) Multicomponent Plasmonic nanoparticles: from Heterostructured nanoparticles to colloidal composite nanostructures. Chem Rev 119:12208–12278

    Article  CAS  PubMed  Google Scholar 

  32. Nam KT, Kim D-W, Yoo PJ, Chiang C-Y, Meethong N, Hammond PT, Chiang Y-M, Belcher AM (2006) Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312:885–888

    Article  CAS  PubMed  Google Scholar 

  33. Huang S, Qi J, deQuilettes DW, Huang M, Lin C-W, Bardhan NM, Dang X, Bulović V, Belcher AM (2019) M13 virus-based framework for high fluorescence enhancement. Small 15:1901233

    Article  Google Scholar 

  34. Wang Y, Ju Z, Cao B, Gao X, Zhu Y, Qiu P, Xu H, Pan P, Bao H, Wang L, Mao C (2015) Ultrasensitive rapid detection of human serum antibody biomarkers by biomarker-capturing viral nanofibers. ACS Nano 9:4475–4483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Peng H, Chen IA (2019) Rapid colorimetric detection of bacterial species through the capture of gold nanoparticles by chimeric phages. ACS Nano 13:1244–1252

    CAS  PubMed  Google Scholar 

  36. Peng H, Rossetto D, Mansy SS, Jordan MC, Roos KP, Chen IA (2022) Treatment of wound infections in a mouse model using Zn2+-releasing phage bound to gold Nanorods. ACS Nano 16:4756–4774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Peng H, Borg RE, Dow LP, Pruitt BL, Chen IA (2020) Controlled phage therapy by photothermal ablation of specific bacterial species using gold nanorods targeted by chimeric phages. Proc Natl Acad Sci 117:1951–1961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lin A, Jimenez J, Derr J, Vera P, Manapat ML, Esvelt KM, Villanueva L, Liu DR, Chen IA (2011) Inhibition of bacterial conjugation by phage M13 and its protein g3p: quantitative analysis and model. PLoS One 6:e19991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ye X, ** L, Caglayan H, Chen J, **ng G, Zheng C, Doan-Nguyen V, Kang Y, Engheta N, Kagan CR, Murray CB (2012) Improved size-tunable synthesis of monodisperse gold Nanorods through the use of aromatic additives. ACS Nano 6:2804–2817

    Article  CAS  PubMed  Google Scholar 

  40. Kernan DL, Wen AM, Pitek AS, Steinmetz NF (2017) Featured article: delivery of chemotherapeutic vcMMAE using tobacco mosaic virus nanoparticles. Exp Biol Med 242:1405–1411

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant No. 32201100) (H.P.) and the U.S. National Institutes of Health (DP2GM123457 to IAC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan Peng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Peng, H., Chen, I.A. (2024). Preparation of Bioconjugates of Chimeric M13 Phage and Gold Nanorods. In: Peng, H., Liu, J., Chen, I.A. (eds) Phage Engineering and Analysis. Methods in Molecular Biology, vol 2793. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3798-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3798-2_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3797-5

  • Online ISBN: 978-1-0716-3798-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation