Using Infrared Thermography for High-Throughput Plant Phenoty**

  • Protocol
  • First Online:
Photosynthesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2790))

  • 367 Accesses

Abstract

Infrared thermography offers a rapid, noninvasive method for measuring plant temperature, which provides a proxy for stomatal conductance and plant water status and can therefore be used as an index for plant stress. Thermal imaging can provide an efficient method for high-throughput screening of large numbers of plants. This chapter provides guidelines for using thermal imaging equipment and illustrative methodologies, coupled with essential considerations, to access plant physiological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 181.89
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 235.39
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scarth G, Loewy A, Shaw M (1948) Use of the infrared total absorption method for estimating the time course of photosynthesis and transpiration. Can J Res 26:94–107

    Article  CAS  PubMed  Google Scholar 

  2. Tanner C (1963) Plant temperatures. Agron J 55:210–211

    Article  Google Scholar 

  3. Idso SB (1982) Non-water-stressed baselines: a key to measuring and interpreting plant water stress. Agric Meteorol 27:59–70

    Article  Google Scholar 

  4. Jackson RD (1982) Canopy temperature and crop water stress. In: Advances in irrigation, vol 1. Elsevier, pp 43–85

    Google Scholar 

  5. Pignon CP, Fernandes SB, Valluru R, Bandillo N, Lozano R, Buckler E, Gore MA, Long SP, Brown PJ, Leakey AD (2021) Phenoty** stomatal closure by thermal imaging for GWAS and TWAS of water use efficiency-related genes. Plant Physiol 187:2544–2562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vialet-Chabrand S, Lawson T (2020) Thermography methods to assess stomatal behaviour in a dynamic environment. J Exp Bot 71:2329–2338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vialet-Chabrand SR, Matthews JS, McAusland L, Blatt MR, Griffiths H, Lawson T (2017) Temporal dynamics of stomatal behavior: modeling and implications for photosynthesis and water use. Plant Physiol 174:603–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. James RA, Sirault XR (2012) Infrared thermography in plant phenoty** for salinity tolerance. In: Plant salt tolerance: methods and protocols. Springer, pp 173–189

    Chapter  Google Scholar 

  9. Prashar A, Jones HG (2014) Infra-red thermography as a high-throughput tool for field phenoty**. Agronomy 4:397–417

    Article  Google Scholar 

  10. Saint Pierre C, Crossa J, Manes Y, Reynolds MP (2010) Gene action of canopy temperature in bread wheat under diverse environments. Theor Appl Genet 120:1107–1117

    Article  PubMed  Google Scholar 

  11. Farella MM, Fisher JB, Jiao W, Key KB, Barnes ML (2022) Thermal remote sensing for plant ecology from leaf to globe. J Ecol 110:1996–2014

    Article  Google Scholar 

  12. Salter WT, Li S, Dracatos PM, Barbour MM (2020) Identification of quantitative trait loci for dynamic and steady-state photosynthetic traits in a barley map** population. AoB Plants 12:plaa063

    Article  PubMed  PubMed Central  Google Scholar 

  13. Berni JA, Zarco-Tejada PJ, Suárez L, Fereres E (2009) Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle. IEEE Trans Geosci Remote Sens 47:722–738

    Article  Google Scholar 

  14. Gonzalez-Dugo V, Zarco-Tejada P, Nicolás E, Nortes PA, Alarcón J, Intrigliolo DS, Fereres E (2013) Using high resolution UAV thermal imagery to assess the variability in the water status of five fruit tree species within a commercial orchard. Precis Agric 14:660–678

    Article  Google Scholar 

  15. Zarco-Tejada PJ, González-Dugo V, Berni JA (2012) Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote Sens Environ 117:322–337

    Article  Google Scholar 

  16. Lawson T, Matthews J (2020) Guard cell metabolism and stomatal function. Annu Rev Plant Biol 71:273–302

    Article  CAS  PubMed  Google Scholar 

  17. Blonquist J Jr, Norman J, Bugbee B (2009) Automated measurement of canopy stomatal conductance based on infrared temperature. Agric For Meteorol 149:2183–2197

    Article  Google Scholar 

  18. Leinonen I, Grant O, Tagliavia C, Chaves M, Jones H (2006) Estimating stomatal conductance with thermal imagery. Plant Cell Environ 29:1508–1518

    Article  CAS  PubMed  Google Scholar 

  19. Qiu GY, Momii K, Yano T (1996) Estimation of plant transpiration by imitation leaf temperature theoretical consideration and field verification (I). Trans Jpn Soc Irrig Drain Reclam Eng 1996:401–410, a401

    Google Scholar 

  20. Lawson T, Weyers J, A’Brook R (1998) The nature of heterogeneity in the stomatal behaviour of Phaseolus vulgaris L. primary leaves. J Exp Bot 49:1387–1395

    Article  CAS  Google Scholar 

  21. Wang Y, Chan KX, Long SP (2021) Towards a dynamic photosynthesis model to guide yield improvement in C4 crops. Plant J 107:343–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. McAusland L, Davey PA, Kanwal N, Baker NR, Lawson T (2013) A novel system for spatial and temporal imaging of intrinsic plant water use efficiency. J Exp Bot 64(16):4993–5007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vialet-Chabrand S, Lawson T (2019) Dynamic leaf energy balance: deriving stomatal conductance from thermal imaging in a dynamic environment. J Exp Bot 70:2839–2855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sagan V, Maimaitijiang M, Sidike P, Eblimit K, Peterson KT, Hartling S, Esposito F, Khanal K, Newcomb M, Pauli D (2019) UAV-based high resolution thermal imaging for vegetation monitoring, and plant phenoty** using ICI 8640 P, FLIR Vue Pro R 640, and thermomap cameras. Remote Sens 11:330

    Article  Google Scholar 

  25. Merlot S, Mustilli AC, Genty B, North H, Lefebvre V, Sotta B, Vavasseur A, Giraudat J (2002) Use of infrared thermal imaging to isolate Arabidopsis mutants defective in stomatal regulation. Plant J 30:601–609

    Article  CAS  PubMed  Google Scholar 

  26. Li L, Zhang Q, Huang D (2014) A review of imaging techniques for plant phenoty**. Sensors 14:20078–20111

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kaplan H (2007) Practical applications of infrared thermal sensing and imaging equipment. SPIE Press

    Google Scholar 

  28. Bian J, Zhang Z, Chen J, Chen H, Cui C, Li X, Chen S, Fu Q (2019) Simplified evaluation of cotton water stress using high resolution unmanned aerial vehicle thermal imagery. Remote Sens 11:267

    Article  Google Scholar 

  29. Matsuda R, Ohashi-Kaneko K, Fujiwara K, Kurata K (2007) Analysis of the relationship between blue-light photon flux density and the photosynthetic properties of spinach (Spinacia oleracea L.) leaves with regard to the acclimation of photosynthesis to growth irradiance. Soil Sci Plant Nutr 53:459–465

    Article  CAS  Google Scholar 

  30. Jones H (1999) Use of thermography for quantitative studies of spatial and temporal variation of stomatal conductance over leaf surfaces. Plant Cell Environ 22:1043–1055

    Article  Google Scholar 

  31. Schuepp P (1993) Tansley review No. 59. Leaf boundary layers. New Phytol 125:477–507

    Article  CAS  PubMed  Google Scholar 

  32. Guilioni L, Jones HG, Leinonen I, Lhomme JP (2008) On the relationships between stomatal resistance and leaf temperatures in thermography. Agric For Meteorol 148(11):1908–1912

    Article  Google Scholar 

  33. Lawson T, Weyers J (1999) Spatial and temporal variation in gas exchange over the lower surface of Phaseolus vulgaris L. primary leaves. J Exp Bot 50:1381–1391

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tracy Lawson .

Editor information

Editors and Affiliations

1 Electronic Supplementary Materials

Thermal demo V2.0 (MP4 86369 kb)

Supplemental File 2

R Script thermal chapter calculation (R 4 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fan, M., Stamford, J., Lawson, T. (2024). Using Infrared Thermography for High-Throughput Plant Phenoty**. In: Covshoff, S. (eds) Photosynthesis . Methods in Molecular Biology, vol 2790. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3790-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3790-6_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3789-0

  • Online ISBN: 978-1-0716-3790-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation