Analysis of Synaptic Glutamate Clearance as a Possible Indicator of Synaptic Health in the Degenerating Rodent Brain

  • Protocol
  • First Online:
New Technologies for Glutamate Interaction

Part of the book series: Neuromethods ((NM,volume 207))

  • 235 Accesses

Abstract

Neurodegeneration may present multiple challenges when one tries to quantify the astrocytic contribution to synaptic reorganization in a diseased animal. It is therefore desirable to apply tests that would detect alterations occurring in vivo but at sufficiently elementary level of defined cellular interactions. With reliable tools to identify a given synapse with respect to the pathway of origin, one could examine the specific impact of experimentally induced modifications in adjacent astrocytes. Ideally, one might be able study the properties of individual synapses in contact with a predefined type of individual astrocyte.

In our lab, respective techniques for single synapse imaging and analysis of synapse-astrocyte relationships were established in the course of a preclinical research project on Huntington’s disease (HD). We aimed at exploring new possibilities of functional rescue by expression of a modified version of the glutamate transporter EAAT2, the type 2 excitatory amino acid transporter. Our focus was on improvement of glutamate clearance, since it has repeatedly been suggested that there might be an excitotoxic component in the pathogenesis of HD. From the very outset, we therefore sought to establish and to verify indicators suitable for independent evaluation of glutamate uptake as opposed to glutamate release.

HD is a fatal neurodegenerative disease of monogenic origin. Expression of mutant huntingtin (mHTT) damages the afflicted cells (both neurons and astrocytes) in multiple ways. The most vulnerable brain area would be the dorsal striatum (caudate nucleus in humans), and the most afflicted input is the corticostriatal pathway, The latter is known to control the initiation of movements. Its damage has been associated with symptoms of hypokinesia, i.e., less frequent and slowed spontaneous movement activity, loss of neuropil, increased neuronal excitability, and reduced capacity of glutamate uptake.

In the murine striatum, most of the synaptic glutamate uptake is carried out by the excitatory amino acid transporter type 2, EAAT2, but overexpression of native EAAT2 in HD mice provided little evidence for functional rescue. We therefore explored the effects of genetically modified forms of EAAT2 and were successful with a C-terminal-truncated version of EAAT2 (EAAT2-S506X) expressed in striatal astrocytes under the control of a GFAP-promoter. This intervention not only restored the glutamate uptake of transduced astrocytes but also ameliorated the symptoms of hypokinesia in treated HD mice. We therefore wanted to know to what extent the function of individual corticostriatal synapses is shaped by their astroglial environment.

The following description of respective experiments is divided in two parts. Part 1 addresses some basic requirements to be considered for the successful implementation of single-synapse glutamate imaging as such. Part 2 will show how single-synapse imaging can be combined with single-astrocyte imaging to characterize glutamatergic synaptic transmission in its dependence on astrocyte activity in HD and the disease-changing effects of astrocytic EAAT2 modifications. It will be demonstrated that the expression of a modified EAAT2 transgene can change the glutamate clearance characteristics of the contacted synapses.

Although the outlined applications of single-synapse imaging to preclinical research in HD will require a certain level of experimental skills and good organization of animal supply, they have the advantage that they can be performed with a relatively low-cost equipment. This should make our approach attractive for forthcoming projects on other types of neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  CAS  PubMed  Google Scholar 

  2. Vandenberg RJ, Ryan RM (2013) Mechanisms of glutamate transport. Physiol Rev 93:1621–1657

    Article  CAS  PubMed  Google Scholar 

  3. Jensen AA, Fahlke C, Bjorn-Yoshimoto WE, Bunch L (2015) Excitatory amino acid transporters: recent insights into molecular mechanisms, novel modes of modulation and new therapeutic possibilities. Curr Opin Pharmacol 20:116–123

    Article  CAS  PubMed  Google Scholar 

  4. Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, ** L, Kuncl RW, Kanai Y, Hediger MA, Wang Y, Schielke JP, Welty DF (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16:675–686

    Article  CAS  PubMed  Google Scholar 

  5. Lehre KP, Danbolt NC (1998) The number of glutamate transporter subtype molecules at glutamatergic synapses: chemical and stereological quantification in young adult rat brain. J Neurosci 18:8751–8757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Melone M, Bellesi M, Ducati A, Iacoangeli M, Conti F (2011) Cellular and synaptic localization of EAAT2a in human cerebral cortex. Front Neuroanat 4:151

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, **ng Y, Lubischer JL, Krieg PA, Krupenko SA, Thompson WJ, Barres BA (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28:264–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Marcaggi P, Attwell D (2004) Role of glial amino acid transporters in synaptic transmission and brain energetics. Glia 47:217–225

    Article  PubMed  Google Scholar 

  9. Diamond JS, Jahr CE (2000) Synaptically released glutamate does not overwhelm transporters on hippocampal astrocytes during high-frequency stimulation. J Neurophysiol 83:2835–2843

    Article  CAS  PubMed  Google Scholar 

  10. Tzingounis AV, Wadiche JI (2007) Glutamate transporters: confining runaway excitation by sha** synaptic transmission. Nat Rev Neurosci 8:935–947

    Article  CAS  PubMed  Google Scholar 

  11. Pekny M, Pekna M, Messing A, Steinhauser C, Lee JM, Parpura V, Hol EM, Sofroniew MV, Verkhratsky A (2016) Astrocytes: a central element in neurological diseases. Acta Neuropathol 131:323–345

    Article  CAS  PubMed  Google Scholar 

  12. Verkhratsky A, Zorec R, Rodriguez JJ, Parpura V (2016) Astroglia dynamics in ageing and Alzheimer’s disease. Curr Opin Pharmacol 26:74–79

    Article  CAS  PubMed  Google Scholar 

  13. Khakh BS, Beaumont V, Cachope R, Munoz-Sanjuan I, Goldman SA, Grantyn R (2017) Unravelling and exploiting astrocyte dysfunction in Huntington’s disease. Trends Neurosci 40:422–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Langfelder P, Cantle JP, Chatzopoulou D, Wang N, Gao F, Al Ramahi I, Lu XH, Ramos EM, El Zein K, Zhao Y, Deverasetty S, Tebbe A, Schaab C, Lavery DJ, Howland D, Kwak S, Botas J, Aaronson JS, Rosinski J, Coppola G, Horvath S, Yang XW (2016) Integrated genomics and proteomics define huntingtin CAG length-dependent networks in mice. Nat Neurosci 19:623–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bradford J, Shin JY, Roberts M, Wang CE, Li XJ, Li S (2009) Expression of mutant huntingtin in mouse brain astrocytes causes age-dependent neurological symptoms. Proc Natl Acad Sci U S A 106:22480–22485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Meunier C, Merienne N, Jolle C, Deglon N, Pellerin L (2016) Astrocytes are key but indirect contributors to the development of the symptomatology and pathophysiology of Huntington’s disease. Glia 64:1841–1856

    Article  PubMed  Google Scholar 

  17. Faideau M, Kim J, Cormier K, Gilmore R, Welch M, Auregan G, Dufour N, Guillermier M, Brouillet E, Hantraye P, Deglon N, Ferrante RJ, Bonvento G (2010) In vivo expression of polyglutamine-expanded huntingtin by mouse striatal astrocytes impairs glutamate transport: a correlation with Huntington’s disease subjects. Hum Mol Genet 19:3053–3067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shin JY, Fang ZH, Yu ZX, Wang CE, Li SH, Li XJ (2005) Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity. J Cell Biol 171:1001–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lievens JC, Woodman B, Mahal A, Spasic-Boscovic O, Samuel D, Kerkerian-Le Goff L, Bates GP (2001) Impaired glutamate uptake in the R6 Huntington’s disease transgenic mice. Neurobiol Dis 8:807–821

    Article  CAS  PubMed  Google Scholar 

  20. Huang K, Kang MH, Askew C, Kang R, Sanders SS, Wan J, Davis NG, Hayden MR (2010) Palmitoylation and function of glial glutamate transporter-1 is reduced in the YAC128 mouse model of Huntington disease. Neurobiol Dis 40:207–215

    Article  CAS  PubMed  Google Scholar 

  21. Parsons MP, Vanni MP, Woodard CL, Kang R, Murphy TH, Raymond LA (2016) Real-time imaging of glutamate clearance reveals normal striatal uptake in Huntington disease mouse models. Nat Commun 7:11251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dvorzhak A, Vagner T, Grantyn R (2016) Functional indicators of glutamate transport in single striatal astrocytes and the influence of Kir4.1 in normal and Huntington mice. J Neurosci 16:4959–4975

    Article  Google Scholar 

  23. Parievsky A, Moore C, Kamdjou T, Cepeda C, Meshul CK, Levine MS (2017) Differential electrophysiological and morphological alterations of thalamostriatal and corticostriatal projections in the R6/2 mouse model of Huntington’s disease. Neurobiol Dis 108:29–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Petr GT, Schultheis LA, Hussey KC, Sun Y, Dubinsky JM, Aoki C, Rosenberg PA (2013) Decreased expression of GLT-1 in the R6/2 model of Huntington’s disease does not worsen disease progression. Eur J Neurosci 38:2477–2490

    Article  PubMed  PubMed Central  Google Scholar 

  25. Petr GT, Sun Y, Frederick NM, Zhou Y, Dhamne SC, Hameed MQ, Miranda C, Bedoya EA, Fischer KD, Armsen W, Wang J, Danbolt NC, Rotenberg A, Aoki CJ, Rosenberg PA (2015) Conditional deletion of the glutamate transporter GLT-1 reveals that astrocytic GLT-1 protects against fatal epilepsy while neuronal GLT-1 contributes significantly to glutamate uptake into synaptosomes. J Neurosci 35:5187–5201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rothe T, Deliano M, Wojtowicz AM, Dvorzhak A, Harnack D, Paul S, Vagner T, Melnick I, Stark H, Grantyn R (2015) Pathological gamma oscillations, impaired dopamine release, synapse loss and reduced dynamic range of unitary glutamatergic synaptic transmission in the striatum of hypokinetic Q175 Huntington mice. Neuroscience 311:519–538

    Article  CAS  PubMed  Google Scholar 

  27. Deng YP, Wong T, Bricker-Anthony C, Deng B, Reiner A (2013) Loss of corticostriatal and thalamostriatal synaptic terminals precedes striatal projection neuron pathology in heterozygous Q140 Huntington’s disease mice. Neurobiol Dis 60:89–107

    Article  CAS  PubMed  Google Scholar 

  28. Reiner A, Deng YP (2018) Disrupted striatal neuron inputs and outputs in Huntington’s disease. CNS Neurosci Ther 24:250–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kalandadze A, Wu Y, Robinson MB (2002) Protein kinase C activation decreases cell surface expression of the GLT-1 subtype of glutamate transporter. Requirement of a carboxyl-terminal domain and partial dependence on serine 486. J Biol Chem 277:45741–45750

    Article  CAS  PubMed  Google Scholar 

  30. Underhill SM, Wheeler DS, Amara SG (2015) Differential regulation of two isoforms of the glial glutamate transporter EAAT2 by DLG1 and CaMKII. J Neurosci 35:5260–5270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gonzalez-Gonzalez IM, Garcia-Tardon N, Gimenez C, Zafra F (2008) PKC-dependent endocytosis of the GLT1 glutamate transporter depends on ubiquitylation of lysines located in a C-terminal cluster. Glia 56:963–974

    Article  PubMed  Google Scholar 

  32. Leinenweber A, Machtens JP, Begemann B, Fahlke C (2011) Regulation of glial glutamate transporters by C-terminal domains. J Biol Chem 286:1927–1937

    Article  CAS  PubMed  Google Scholar 

  33. Gibb SL, Boston-Howes W, Lavina ZS, Gustincich S, Brown RH Jr, Pasinelli P, Trotti D (2007) A caspase-3-cleaved fragment of the glial glutamate transporter EAAT2 is sumoylated and targeted to promyelocytic leukemia nuclear bodies in mutant SOD1-linked amyotrophic lateral sclerosis. J Biol Chem 282:32480–32490

    Article  CAS  PubMed  Google Scholar 

  34. Foran E, Bogush A, Goffredo M, Roncaglia P, Gustincich S, Pasinelli P, Trotti D (2011) Motor neuron impairment mediated by a sumoylated fragment of the glial glutamate transporter EAAT2. Glia 59:1719–1731

    Article  PubMed  PubMed Central  Google Scholar 

  35. Rosenblum LT, Shamamandri-Markandaiah S, Ghosh B, Foran E, Lepore AC, Pasinelli P, Trotti D (2017) Mutation of the caspase-3 cleavage site in the astroglial glutamate transporter EAAT2 delays disease progression and extends lifespan in the SOD1-G93A mouse model of ALS. Exp Neurol 292:145–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hirschberg S, Dvorzhak A, Rasooli-Nejad SMA, Angelov S, Kirchner M, Mertins P, Lättig-Tünnemann G, Harms C, Schmitz D, Grantyn R (2022) Uncoupling the excitatory amino acid transporter 2 from its C-terminal interactome restores synaptic glutamate clearance at corticostriatal synapses and alleviates mutant huntingtin-induced hypokinesia. Front Cell Neurosci 15:792652

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lines J, Covelo A, Gomez R, Liu L, Araque A (2017) Synapse-specific regulation revealed at single synapses is concealed when recording multiple synapses. Front Cell Neurosci 11:367

    Article  PubMed  PubMed Central  Google Scholar 

  38. Octeau JC, Chai H, Jiang R, Bonanno SL, Martin KC, Khakh BS (2018) An optical neuron-astrocyte proximity assay at synaptic distance scales. Neuron 98:49–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Plotkin JL, Surmeier DJ (2015) Corticostriatal synaptic adaptations in Huntington’s disease. Curr Opin Neurobiol 33C:53–62

    Article  Google Scholar 

  40. Villalba RM, Smith Y (2018) Loss and remodeling of striatal dendritic spines in Parkinson’s disease: from homeostasis to maladaptive plasticity? J Neural Transm (Vienna) 125:431–447

    Article  PubMed  Google Scholar 

  41. Huerta-Ocampo I, Mena-Segovia J, Bolam JP (2014) Convergence of cortical and thalamic input to direct and indirect pathway medium spiny neurons in the striatum. Brain Struct Funct 219:1787–1800

    Article  PubMed  Google Scholar 

  42. Rebec GV (2018) Corticostriatal network dysfunction in Huntington’s disease: deficits in neural processing, glutamate transport, and ascorbate release. CNS Neurosci Ther 24:281–291

    Google Scholar 

  43. Cepeda C, Levine MS (2022) Synaptic dysfunction in Huntington’s disease: lessons from genetic animal models. Neuroscientist 28:20–40

    Article  CAS  PubMed  Google Scholar 

  44. Dvorzhak A, Helassa N, Torok K, Schmitz D, Grantyn R (2019) Single synapse indicators of impaired glutamate clearance derived from fast iGluu imaging of cortical afferents in the striatum of normal and Huntington (Q175) mice. J Neurosci 39:3970–3982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Plotkin JL, Day M, Peterson JD, **e Z, Kress GJ, Rafalovich I, Kondapalli J, Gertler TS, Flajolet M, Greengard P, Stavarache M, Kaplitt MG, Rosinski J, Chan CS, Surmeier DJ (2014) Impaired TrkB receptor signaling underlies corticostriatal dysfunction in Huntington’s disease. Neuron 83:178–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Carrillo-Reid L, Day M, **e Z, Melendez AE, Kondapalli J, Plotkin JL, Wokosin DL, Chen Y, Kress GJ, Kaplitt M, Ilijic E, Guzman JN, Chan CS, Surmeier DJ (2019) Mutant huntingtin enhances activation of dendritic Kv4 K(+) channels in striatal spiny projection neurons. elife 8:40818

    Article  Google Scholar 

  47. Tong X, Ao Y, Faas GC, Nwaobi SE, Xu J, Haustein MD, Anderson MA, Mody I, Olsen ML, Sofroniew MV, Khakh BS (2014) Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington’s disease model mice. Nat Neurosci 17:694–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dvorzhak A, Grantyn R (2020) Single synapse indicators of glutamate release and uptake in acute brain slices from normal and Huntington mice. J Vis Exp e60113

    Google Scholar 

  49. Helassa N, Durst CD, Coates C, Kerruth S, Arif U, Schulze C, Wiegert JS, Geeves M, Oertner TG, Torok K (2018) Ultrafast glutamate sensors resolve high-frequency release at Schaffer collateral synapses. Proc Natl Acad Sci U S A 115:5594–5599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Marvin JS, Borghuis BG, Tian L, Cichon J, Harnett MT, Akerboom J, Gordus A, Renninger SL, Chen TW, Bargmann CI, Orger MB, Schreiter ER, Demb JB, Gan WB, Hires SA, Looger LL (2013) An optimized fluorescent probe for visualizing glutamate neurotransmission. Nat Methods 10:162–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Menalled LB, Kudwa AE, Miller S, Fitzpatrick J, Watson-Johnson J, Keating N, Ruiz M, Mushlin R, Alosio W, McConnell K, Connor D, Murphy C, Oakeshott S, Kwan M, Beltran J, Ghavami A, Brunner D, Park LC, Ramboz S, Howland D (2012) Comprehensive behavioral and molecular characterization of a new knock-in mouse model of Huntington’s disease: zQ175. PLoS One 7:e49838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Vagner T, Dvorzhak A, Wojtowicz AM, Harms C, Grantyn R (2016) Systemic application of AAV vectors targeting GFAP-expressing astrocytes in Z-Q175-KI Huntington’s disease mice. Mol Cell Neurosci 77:76–86

    Article  CAS  PubMed  Google Scholar 

  53. Aarts E, Verhage M, Veenvliet JV, Dolan CV, van der Sluis S (2014) A solution to dependency: using multilevel analysis to accommodate nested data. Nat Neurosci 17:491–496

    Article  CAS  PubMed  Google Scholar 

  54. Nimmerjahn A, Kirchhoff F, Kerr JN, Helmchen F (2004) Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo. Nat Methods 1:31–37

    Article  CAS  PubMed  Google Scholar 

  55. Brymer KJ, Barnes JR, Parsons MP (2021) Entering a new era of quantifying glutamate clearance in health and disease. J Neurosci Res 99:1598–1617

    Article  CAS  PubMed  Google Scholar 

  56. Halassa MM, Fellin T, Takano H, Dong JH, Haydon PG (2007) Synaptic islands defined by the territory of a single astrocyte. J Neurosci 27:6473–6477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by CHDI (A-12467), the German Research Foundation, under Germany’s Excellence Strategy (Exc 2049 – 390688087) and intramural Charité Research Funds to R.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosemarie Grantyn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dvorzhak, A., Grantyn, R. (2024). Analysis of Synaptic Glutamate Clearance as a Possible Indicator of Synaptic Health in the Degenerating Rodent Brain. In: Kukley, M. (eds) New Technologies for Glutamate Interaction. Neuromethods, vol 207. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3742-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3742-5_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3741-8

  • Online ISBN: 978-1-0716-3742-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation