Laser Sources for Traditional and Spectral Flow Cytometry

  • Protocol
  • First Online:
Flow Cytometry Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2779))

  • 728 Accesses

Abstract

Lasers for light scattering measurement and fluorescence excitation are essential components of all flow cytometers. Flow cytometers now typically rely on multiple laser wavelengths allowing excitation of a constantly increasing variety of fluorescent probes. The expanding use of spectral flow cytometry to increase the magnitude of multiparametric analysis is also changing the significance of laser choice in cytometry. In this chapter, we review the lasers available for flow cytometry and provide guidance in choosing laser wavelengths and characteristics to best match the needs of modern cell analysis by both conventional and spectral cytometry. We also discuss the recent advances in laser technology as the push to expand the palette of laser wavelength for cytometry continues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 169.99
Price includes VAT (Thailand)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 199.99
Price excludes VAT (Thailand)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shapiro HM (2003) How flow cytometers work. In: Practical flow cytometry, 4th edn. Wiley, New York, pp 124–149

    Chapter  Google Scholar 

  2. Titus JA, Haugland R, Sharrow SO, Segal DM (1982) Texas red, a hydrophilic, red-emitting fluorophore for use with fluorescein in dual parameter flow microfluorometric and fluorescence microscopic studies. J Immunol Methods 50(2):193–204

    Article  CAS  PubMed  Google Scholar 

  3. Oi VT, Glazer AN, Stryer L (1982) Fluorescent phycobiliprotein conjugates for analyses of cells and molecules. J Cell Biol 93(3):981–986

    Article  CAS  PubMed  Google Scholar 

  4. Frey T, Houck DW, Shenker BJ, Hoffman RA (1994) Bivariate flow karyoty** with air-cooled lasers. Cytometry 16(2):169–174. https://doi.org/10.1002/cyto.990160211

    Article  CAS  PubMed  Google Scholar 

  5. Shapiro HM, Stephens S (1986) Flow cytometry of DNA content using oxazine 750 or related laser dyes with 633 nm excitation. Cytometry 7(1):107–110. https://doi.org/10.1002/cyto.990070118

    Article  CAS  PubMed  Google Scholar 

  6. Hoffman RA, Reinhardt BN, Stevens FE (1987) Two-color immunofluorescence using a red helium neon laser. Cytometry Suppl 1:103

    Google Scholar 

  7. Shapiro HM (1993) Trends and developments in flow cytometry instrumentation. Ann N Y Acad Sci 677:155–166

    Article  CAS  PubMed  Google Scholar 

  8. Shapiro HM (1986) The little laser that could: applications of low power lasers in clinical flow cytometry. Ann N Y Acad Sci 468:18–27

    Article  CAS  PubMed  Google Scholar 

  9. Loken MR, Keij JF, Kelley KA (1987) Comparison of helium-neon and dye lasers for the excitation of allophycocyanin. Cytometry 8(1):96–100. https://doi.org/10.1002/cyto.990080114

    Article  CAS  PubMed  Google Scholar 

  10. Doornbos RM, De Grooth BG, Kraan YM, Van Der Poel CJ, Greve J (1994) Visible diode lasers can be used for flow cytometric immunofluorescence and DNA analysis. Cytometry 15(3):267–271. https://doi.org/10.1002/cyto.990150312

    Article  CAS  PubMed  Google Scholar 

  11. Roederer M (2002) Multiparameter FACS analysis. Curr Protoc Immunol Chapter 5:Unit 5 8. https://doi.org/10.1002/0471142735.im0508s49

    Article  PubMed  Google Scholar 

  12. Shapiro HM, Perlmutter NG (2001) Violet laser diodes as light sources for cytometry. Cytometry 44(2):133–136

    Article  CAS  PubMed  Google Scholar 

  13. Hoffman RA (2002) Multicolor immunofluorescence flow cytometry using 400 nm laser diode excitation. Cytometry Suppl 11:124

    Google Scholar 

  14. Telford WG, Hawley TS, Hawley RG (2003) Analysis of violet-excited fluorochromes by flow cytometry using a violet laser diode. Cytometry A 54(1):48–55. https://doi.org/10.1002/cyto.a.10046

    Article  PubMed  Google Scholar 

  15. Telford WG, Murga M, Hawley TS, Hawley RG, Packard BZ, Komoriya A, Hass R, Hubert C (2005) DPSS yellow-green 561 nm lasers for improved fluorochrome detection by flow cytometry. Cytometry A 68:36–44

    Article  PubMed  Google Scholar 

  16. Perfetto SP, Roederer M (2007) Increased immunofluorescence sensitivity using 532 nm laser excitation. Cytometry A 71(2):73–79. https://doi.org/10.1002/cyto.a.20358

    Article  CAS  PubMed  Google Scholar 

  17. Chattopadhyay PK, Price DA, Harper TF, Betts MR, Yu J, Gostick E, Perfetto SP, Goepfert P, Koup RA, De Rosa SC, Bruchez MP, Roederer M (2006) Quantum dot semiconductor nanocrystals for immunophenoty** by polychromatic flow cytometry. Nat Med 12(8):972–977. https://doi.org/10.1038/nm1371

    Article  CAS  PubMed  Google Scholar 

  18. Chattopadhyay PK, Yu J, Roederer M (2007) Application of quantum dots to multicolor flow cytometry. Methods Mol Biol 374:175–184. https://doi.org/10.1385/1-59745-369-2:175

    Article  PubMed  Google Scholar 

  19. Chattopadhyay PK, Gaylord B, Palmer A, Jiang N, Raven MA, Lewis G, Reuter MA, Nur-ur Rahman AK, Price DA, Betts MR, Roederer M (2012) Brilliant violet fluorophores: a new class of ultrabright fluorescent compounds for immunofluorescence experiments. Cytometry A 81(6):456–466. https://doi.org/10.1002/cyto.a.22043

    Article  CAS  PubMed  Google Scholar 

  20. Kapoor V, Subach FV, Kozlov VG, Grudinin A, Verkhusha VV, Telford WG (2007) New lasers for flow cytometry: filling the gaps. Nat Methods 4(9):678–679. https://doi.org/10.1038/nmeth0907-678

    Article  CAS  PubMed  Google Scholar 

  21. Kapoor V, Karpov V, Linton C, Subach FV, Verkhusha VV, Telford WG (2008) Solid state yellow and orange lasers for flow cytometry. Cytometry A 73(6):570–577. https://doi.org/10.1002/cyto.a.20563

    Article  PubMed  PubMed Central  Google Scholar 

  22. Telford WG, Hawley TS, Subach F, Verkhusha VV, Hawley RG (2012) Flow cytometry of fluorescent proteins. Methods 57(3):318–330. https://doi.org/10.1016/j.ymeth.2012.01.003

    Article  CAS  PubMed  Google Scholar 

  23. Telford WG, Frolova EG (2004) Discrimination of the Hoechst side population in mouse bone marrow with violet and near-ultraviolet laser diodes. Cytometry A 57(1):45–52. https://doi.org/10.1002/cyto.a.10109

    Article  PubMed  Google Scholar 

  24. Telford WG (2004) Small lasers in flow cytometry. In: Hawley TS, Hawley RG (eds) Flow cytometry protocols, 2nd edition. Methods in molecular biology 263. Humana Press, London, pp 399–418. https://doi.org/10.1385/1-59259-773-4:399

    Chapter  Google Scholar 

  25. Telford WG (2011) Lasers in flow cytometry. In: Darzykiewicz Z et al (eds) Methods in cell biology, vol 102. Academic, New York, pp 375–409. https://doi.org/10.1016/B978-0-12-374912-3.00015-8

    Chapter  Google Scholar 

  26. Telford WG (2018) Overview of lasers for flow cytometry. In: Hawley TS, Hawley RG (eds) Flow cytometry protocols, 4th edition. Methods in molecular biology 1678. Humana Press, New York, pp 447–478. https://doi.org/10.1007/978-1-4939-7346-0_19

    Chapter  Google Scholar 

  27. Telford W, Georges T, Miller C, Voluer P (2019) Deep ultraviolet lasers for flow cytometry. Cytometry A 95:227–233

    Article  CAS  PubMed  Google Scholar 

  28. Telford WG, Strickland L, Koschorreck M (2017) Ultraviolet 320 nm lasers for flow cytometry. Cytometry A 91:314–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Telford WG, Kapoor V, Jackson J, Burgess W, Buller G, Hawley TS, Hawley RG (2006) Violet laser diodes in flow cytometry: an update. Cytometry A 69:1153–1160

    Article  PubMed  Google Scholar 

  30. Telford WG, Babin SA, Khorev SV, Rowe SH (2009) Green fiber lasers: an alternative to traditional DPSS green lasers for flow cytometry. Cytometry A 75(12):1031–1039. https://doi.org/10.1002/cyto.a.20790

    Article  PubMed  PubMed Central  Google Scholar 

  31. Matz MV, Fradkov AF, Labas YA, Savitsky AP, Zaraisky AG, Markelov ML, Lukyanov SA (1999) Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol 17(10):969–973. https://doi.org/10.1038/13657

    Article  CAS  PubMed  Google Scholar 

  32. Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22(12):1567–1572. https://doi.org/10.1038/nbt1037

    Article  CAS  PubMed  Google Scholar 

  33. Shapiro HM, Telford WG (2018) Lasers for flow cytometry: current and future trends. In: Robinson JP, Darzynkiewicz Z, Dobrucki J, Hoffman RA, Nolan JP, Orfao A, Rabinovitch PS, Telford WG (eds) Current protocols in cytometry, vol 86. Wiley, New York, pp 1.9.1–11.9.21

    Google Scholar 

  34. Cabana R, Frolova EG, Kapoor V, Thomas RA, Krishan A, Telford WG (2006) The minimal instrumentation requirements for Hoechst side population analysis: stem cell analysis on low-cost flow cytometry platforms. Stem Cells 24(11):2573–2581. https://doi.org/10.1634/stemcells.2006-0266

    Article  PubMed  Google Scholar 

  35. Telford WG (2004) Analysis of UV-excited fluorochromes by flow cytometry using near-ultraviolet laser diodes. Cytometry A 61(1):9–17. https://doi.org/10.1002/cyto.a.20032

    Article  PubMed  Google Scholar 

  36. Telford WG (2015) Near-ultraviolet laser diodes for brilliant ultraviolet fluorophore excitation. Cytometry A 87(12):1127–1137. https://doi.org/10.1002/cyto.a.22686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nolan JP (2022) The evolution of spectral flow cytometry. Cytometry A 101:812–817

    Article  PubMed  Google Scholar 

  38. Mandy FF, Bergeron M, Recktenwald D, Izaguirre CA (1992) A simultaneous three-color T cell subsets analysis with single laser flow cytometers using T cell gating protocol. Comparison with conventional two-color immunophenoty** method. J Immunol Methods 156:151–162

    Article  CAS  PubMed  Google Scholar 

  39. Hawley TS, Hawley RG, Telford WG (2017) Fluorescent proteins for flow cytometry. In: Robinson JP, Darzynkiewicz Z, Dobrucki J, Hoffman RA, Nolan JP, Orfao A, Rabinovitch PS, Telford WG (eds) Current protocols in cytometry, vol 80. Wiley, New York, pp 9.12.1–9.12.20

    Google Scholar 

  40. Snow C, Cram LS (1993) The suitability of air-cooled helium cadmium (HeCd) lasers for two color analysis and sorting of human chromosomes. Cytometry Suppl 6:20

    Google Scholar 

  41. Beavis AJ, Kalejta RF (1999) Simultaneous analysis of the cyan, yellow and green fluorescent proteins by flow cytometry using single-laser excitation at 458 nm. Cytometry 37(1):68–73

    Article  CAS  PubMed  Google Scholar 

  42. Stringaris K, Hoyt RF, Davidson-Moncada JK, Pantin JM, Tisdale JF, Uchida N, Raines LN, Reger R, Sato N, Dunbar CE, Hunt TJ, Clevenger RR, Krouse A, Metzger ME, Bonifacino AC, Telford W, Choyke PL, Engels T, Donahue RE, Childs RW (2020) Intrabone transplantation of CD34+ cells with optimized delivery does not enhance engraftment in a rhesus macaque model. Blood Adv 4:6148–6156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Telford WG (2015) Near infrared lasers in flow cytometry. Methods 82:12–20. https://doi.org/10.1016/j.ymeth.2015.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lawrence WG, Varadi G, Entine G, Podniesinski E, Wallace PK (2008) Enhanced red and near infrared detection in flow cytometry using avalanche photodiodes. Cytometry A 73(8):767–776. https://doi.org/10.1002/cyto.a.20595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Telford WG, Shcherbakova DM, Buschke D, Hawley TS, Verkhusha VV (2015) Multiparametric flow cytometry using near-infrared fluorescent proteins engineered from bacterial phytochromes. PLoS One 10(3):e0122342. https://doi.org/10.1371/journal.pone.0122342. eCollection 2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Telford WG, Subach FV, Verkhusha VV (2009) Supercontinuum white light lasers for flow cytometry. Cytometry 75A:450–459

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William G. Telford .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Telford, W.G. (2024). Laser Sources for Traditional and Spectral Flow Cytometry. In: Hawley, T.S., Hawley, R.G. (eds) Flow Cytometry Protocols. Methods in Molecular Biology, vol 2779. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3738-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3738-8_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3737-1

  • Online ISBN: 978-1-0716-3738-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation