Conformational Heterogeneity of β-Barrel Membrane Proteins Observed In Situ Using Orthogonal Spin Labels and Pulsed ESR Spectroscopy

  • Protocol
  • First Online:
Transmembrane β-Barrel Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2778))

Abstract

Outer membrane proteins (OMPs) of Gram-negative bacteria are involved in many essential functions of the cell. They are tightly packed in the outer membrane, which is an asymmetric lipid bilayer. Electron spin resonance (ESR) spectroscopic techniques combined with site-directed spin labeling (SDSL) enable observation of structure and conformational dynamics of these proteins directly in their native environments. Here we depict a protocol for site-directed spin labeling of β-barrel membrane proteins in isolated outer membranes and intact E. coli using nitroxide, triarylmethyl (trityl), and Gd3+-based spin tags. Furthermore, subsequent continuous wave (CW) and orthogonal pulsed electron-electron double resonance (PELDOR) measurements are described along with experimental setup at Q-band (34 GHz), the data analysis, and interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gessmann D et al (2014) Outer membrane β-barrel protein folding is physically controlled by periplasmic lipid head groups and BamA. Proc Natl Acad Sci U S A 111(16):5878–5883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gupta K et al (2017) The role of interfacial lipids in stabilizing membrane protein oligomers. Nature 541(7637):421–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Laganowsky A et al (2014) Membrane proteins bind lipids selectively to modulate their structure and function. Nature 510(7503):172–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dowhan W, Bogdanov M (2011) Lipid-protein interactions as determinants of membrane protein structure and function. Biochem Soc Trans 39(3):767–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Balusek C, Gumbart JC (2016) Role of the native outer-membrane environment on the transporter BtuB. Biophys J 111(7):1409–1417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tomasek D et al (2020) Structure of a nascent membrane protein as it folds on the BAM complex. Nature 583(7816):473–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hubbell WL, Altenbach C (1994) Investigation of structure and dynamics in membrane proteins using site-directed spin labeling. Curr Opin Struct Biol 4(4):566–573

    Article  CAS  Google Scholar 

  8. Galazzo L et al (2022) The ABC transporter MsbA adopts the wide inward-open conformation in E. coli cells. Sci Adv 8(41):eabn6845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Goldfarb D (2022) Exploring protein conformations in vitro and in cell with EPR distance measurements. Curr Opin Struct Biol 75:102398

    Article  CAS  PubMed  Google Scholar 

  10. Kugele A et al (2021) In situ EPR spectroscopy of a bacterial membrane transporter using an expanded genetic code. Chem Commun 57(96):12980–12983

    Article  CAS  Google Scholar 

  11. Karthikeyan G et al (2018) A bioresistant nitroxide spin label for in-cell EPR spectroscopy: in vitro and in oocytes protein structural dynamics studies. Angew Chem Int Ed 57(5):1366–1370

    Article  CAS  Google Scholar 

  12. Joseph B et al (2019) In situ observation of conformational dynamics and protein ligand-substrate interactions in outer-membrane proteins with DEER/PELDOR spectroscopy. Nat Protoc 14(8):2344–2369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Azarkh M et al (2013) Site-directed spin-labeling of nucleotides and the use of in-cell EPR to determine long-range distances in a biologically relevant environment. Nat Protoc 8(1):131–147

    Article  CAS  PubMed  Google Scholar 

  14. Krstic I et al (2011) Long-range distance measurements on nucleic acids in cells by pulsed EPR spectroscopy. Angew Chem Int Ed 50(22):5070–5074

    Article  CAS  Google Scholar 

  15. Pierro A et al (2022) Probing the structural dynamics of a bacterial chaperone in its native environment by nitroxide-based EPR spectroscopy. Chem Eur J 28(66):e202202249

    Article  CAS  PubMed  Google Scholar 

  16. Altenbach C, Flitsch SL, Khorana HG, Hubbell WL (1989) Structural studies on transmembrane proteins. 2. Spin labeling of bacteriorhodopsin mutants at unique cysteines. Biochemistry 28(19):7806–7812

    Article  CAS  PubMed  Google Scholar 

  17. Joseph B et al (2015) Distance measurement on an endogenous membrane transporter in E. coli cells and native membranes using EPR spectroscopy. Angew Chem Int Ed 54(21):6196–6199

    Article  CAS  Google Scholar 

  18. Ketter S et al (2022) In situ distance measurements in a membrane transporter using maleimide functionalized orthogonal spin labels and 5-pulse electron-electron double resonance spectroscopy. J Magn Reson Open:100041

    Google Scholar 

  19. Martin RE et al (1998) Determination of end-to-end distances in a series of TEMPO diradicals of up to 2.8 nm length with a new four-pulse double electron electron resonance experiment. Angew Chem Int Ed 7(20):2833–2837

    Article  Google Scholar 

  20. Bleicken S et al (2019) Gem-diethyl pyrroline nitroxide spin labels: synthesis, EPR characterization, rotamer libraries and biocompatibility. ChemistryOpen 8(8):1057–1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Braun TS et al (2020) Isoindoline-based nitroxides as bioresistant spin labels for protein labeling through cysteines and alkyne-bearing noncanonical amino acids. Chembiochem 21(7):958–962

    Article  CAS  PubMed  Google Scholar 

  22. Reginsson GW, Kunjir NC, Sigurdsson ST, Schiemann O (2012) Trityl radicals: spin labels for nanometer-distance measurements. Chem Eur J 18(43):13580–13584

    Article  CAS  PubMed  Google Scholar 

  23. Prokopiou G et al (2018) Small Gd(III) tags for Gd(III)-Gd(III) distance measurements in proteins by EPR spectroscopy. Inorg Chem 57(9):5048–5059

    Article  CAS  PubMed  Google Scholar 

  24. Shevelev GY et al (2015) Triarylmethyl labels: toward improving the accuracy of EPR nanoscale distance measurements in DNAs. J Phys Chem B 119(43):13641–13648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cunningham TF et al (2015) The double-histidine Cu2+-binding motif: a highly rigid, site-specific spin probe for electron spin resonance distance measurements. Angew Chem Int Ed 54(21):6330–6334

    Article  CAS  Google Scholar 

  26. Wu ZY et al (2017) Selective distance measurements using triple spin labeling with Gd3+, Mn2+, and a nitroxide. J Phys Chem Lett 8(21):5277–5282

    Article  CAS  PubMed  Google Scholar 

  27. Rudolph M, Tampe R, Joseph B (2023) Time-resolved Mn(2+) -NO and NO-NO distance measurements reveal that catalytic asymmetry regulates alternating access in an ABC transporter. Angew Chem Int Ed 62:e202307091

    Article  CAS  Google Scholar 

  28. Igarashi R et al (2010) Distance determination in proteins inside Xenopus laevis oocytes by double electron-electron resonance experiments. J Am Chem Soc 132(24):8228–8229

    Article  CAS  PubMed  Google Scholar 

  29. Hasanbasri Z et al (2021) Cleavage-resistant protein labeling with hydrophilic trityl enables distance measurements in-cell. J Phys Chem B 125(20):5265–5274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jassoy JJ et al (2019) Site selective and efficient spin labeling of proteins with a maleimide-functionalized trityl radical for pulsed dipolar EPR spectroscopy. Molecules 24(15):2735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ketter S et al (2021) In situ labeling and distance measurements of membrane proteins in E. coli using Finland and OX063 trityl labels. Chem Eur J 27(7):2299–2304

    Article  CAS  PubMed  Google Scholar 

  32. Giannoulis A et al (2019) DEER distance measurements on trityl/trityl and Gd(iii)/trityl labelled proteins. Phys Chem Chem Phys 21(20):10217–10227

    Article  CAS  PubMed  Google Scholar 

  33. Ketter S, Joseph B (2023) Gd(3+)-trityl-nitroxide triple labeling and distance measurements in the heterooligomeric cobalamin transport complex in the native lipid bilayers. J Am Chem Soc 145(2):960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Galazzo L, Teucher M, Bordignon E (2022) Orthogonal spin labeling and pulsed dipolar spectroscopy for protein studies. Methods Enzymol 666:79–119

    Article  CAS  PubMed  Google Scholar 

  35. Narr E, Godt A, Jeschke G (2002) Selective measurements of a nitroxide-nitroxide separation of 5 nm and a nitroxide-copper separation of 2.5 nm in a terpyridine-based copper(II) complex by pulse EPR spectroscopy. Angew Chem Int Ed 41(20):3907–3910

    Article  CAS  Google Scholar 

  36. Wort JL et al (2019) Sub-micromolar pulse dipolar EPR spectroscopy reveals increasing Cu(II) -labelling of double-histidine motifs with lower temperature. Angew Chem Int Ed 58(34):11681–11685

    Article  CAS  Google Scholar 

  37. Gopinath A, Joseph B (2022) Conformational flexibility of the protein insertase BamA in the native asymmetric bilayer elucidated by ESR spectroscopy. Angew Chem Int Ed 61(2):e202113448

    Article  CAS  Google Scholar 

  38. Wu T et al (2005) Identification of a multicomponent complex required for outer membrane biogenesis in Escherichia coli. Cell 121(2):235–245

    Article  CAS  PubMed  Google Scholar 

  39. Fairman JW, Noinaj N, Buchanan SK (2011) The structural biology of β-barrel membrane proteins: a summary of recent reports. Curr Opin Struct Biol 21(4):523–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Walther DM, Rapaport D, Tommassen J (2009) Biogenesis of β-barrel membrane proteins in bacteria and eukaryotes: evolutionary conservation and divergence. Cell Mol Life Sci 66(17):2789–2804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Roman-Hernandez G, Peterson JH, Bernstein HD (2014) Reconstitution of bacterial autotransporter assembly using purified components. elife 3:e04234

    Article  PubMed  PubMed Central  Google Scholar 

  42. Fuller-Schaefer CA, Kadner RJ (2005) Multiple extracellular loops contribute to substrate binding and transport by the Escherichia coli cobalamin transporter BtuB. J Bacteriol 187(5):1732–1739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Heller K, Mann BJ, Kadner RJ (1985) Cloning and expression of the gene for the vitamin B12 receptor protein in the outer membrane of Escherichia coli. J Bacteriol 161(3):896–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tormyshev VM et al (2020) Methanethiosulfonate derivative of OX063 trityl: a promising and efficient reagent for side-directed spin labeling of proteins. Chem Eur J 26(12):2705–2712

    Article  CAS  PubMed  Google Scholar 

  45. Jeschke G (2021) MMM: Integrative ensemble modeling and ensemble analysis. Protein Sci 30(1):125–135

    Article  CAS  PubMed  Google Scholar 

  46. Jeschke G et al (2006) DeerAnalysis2006 – a comprehensive software package for analyzing pulsed ELDOR data. Appl Magn Reson 30:473–498

    Article  CAS  Google Scholar 

  47. Fabregas Ibanez L, Jeschke G, Stoll S (2020) DeerLab: a comprehensive software package for analyzing dipolar electron paramagnetic resonance spectroscopy data. Magn Reson 1(2):209–224

    Article  Google Scholar 

  48. Galazzo L et al (2020) Spin-labeled nanobodies as protein conformational reporters for electron paramagnetic resonance in cellular membranes. Proc Natl Acad Sci U S A 117(5):2441–2448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tait CE, Stoll S (2016) Coherent pump pulses in double electron electron resonance spectroscopy. Phys Chem Chem Phys 18(27):18470–18485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Worswick SG, Spencer JA, Jeschke G, Kuprov I (2018) Deep neural network processing of DEER data. Sci Adv 4(8):eaat5218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schiemann O et al (2021) Benchmark test and guidelines for DEER/PELDOR experiments on nitroxide-labeled biomolecules. J Am Chem Soc 143(43):17875–17890

    Article  CAS  PubMed  Google Scholar 

  52. Hermanson GT (2013) Bioconjugate techniques, 3rd edn, pp 1–1146

    Google Scholar 

  53. Jeschke G (2012) DEER distance measurements on proteins. Annu Rev Phys Chem 63:419–446

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported from the Deutsche Forschungsgemeinschaft via the Emmy Noether program (JO 1428/1−1), SFB 1507 − “Membrane-associated Protein Assemblies, Machineries, and Supercomplexes” and a large equipment fund (438280639) to B.J. Trityl labels were provided by Victor M. Tormyshev and Elena G. Bagryanskaya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benesh Joseph .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ketter, S., Gopinath, A., Joseph, B. (2024). Conformational Heterogeneity of β-Barrel Membrane Proteins Observed In Situ Using Orthogonal Spin Labels and Pulsed ESR Spectroscopy. In: Ieva, R. (eds) Transmembrane β-Barrel Proteins. Methods in Molecular Biology, vol 2778. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3734-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3734-0_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3733-3

  • Online ISBN: 978-1-0716-3734-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation