Soluble Sugars and Polysaccharides

  • Chapter
  • First Online:
Basic Methods and Protocols on Sourdough

Part of the book series: Methods and Protocols in Food Science ((MPFS))

  • 184 Accesses

Abstract

During sourdough fermentation, important changes in the carbohydrate fraction occur due to enzymatic and metabolic reactions of both yeasts and lactic acid bacteria involved in the process. Indeed, the production of several metabolites depends on the availability of soluble carbohydrates either initially present in the flour or resulting from the hydrolysis of starch or other polysaccharides.

For the determination of soluble sugars and polysaccharides, enzymatic kits, often based on official methods of analysis, recognized by the scientific community are available. The high specificity of enzymes enables the analysis of complex matrixes without complicated sample preparation techniques and little interferences which, on the contrary, might occur during chromatographic coelution. Nevertheless, although enzymatic assays favor the analysis of several samples in relatively little amount of time, the higher costs of analysis per sample compared to lab-developed methods tip the scale in favor of the latter.

Whereas soluble sugars can be easily extracted and separated through high performance liquid chromatography, starch quantification needs to be preempted by its hydrolysis to glucose. As for dietary fibers, the hydrolysis of proteins and starch precedes filtration of insoluble fiber and precipitation of soluble fiber in ethanol. Their content is then evaluated by weighing after drying. In this chapter, the chromatographic method for mono-, di-, and oligosaccharides, the enzymatic hydrolysis of starch, and the analysis of dietary fibers according to official methods will be described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 168.79
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gänzle MG, Vermeulen N, Vogel RF (2007) Carbohydrate, peptide and lipid metabolism of lactic acid bacteria in sourdough. Food Microbiol 24:128–138

    Article  PubMed  Google Scholar 

  2. Lefebvre D, Gabriel V, Vayssier Y, Fontagne-Faucher C (2002) Simultaneous HPLC determination of sugars, organic acids and ethanol in sourdough process. LWT-Food Sci Technol 35:407–414

    Article  CAS  Google Scholar 

  3. Durán E, León A, Barber B, Benedito de Barber C (2001) Effect of low molecular weight dextrins on gelatinization and retrogradation of starch. Eur Food Res Technol 212:203–207

    Article  Google Scholar 

  4. Chen Y, Eder S, Schubert S, Gorgerat S, Boschet E, Baltensperger L, Boschet E, Städeli C, Kuster S, Fischer P, Windhab EJ (2021) Influence of amylase addition on bread quality and bread staling. ACS Food Sci Technol 1:1143–1150

    Article  CAS  Google Scholar 

  5. Asp NG, Björck I (1992) Resistant starch. Trends Food Sci Technol 3:111–114

    Article  CAS  Google Scholar 

  6. Björck I, Asp NG (1994) Controlling the nutritional properties of starch in foods—a challenge to the food industry. Trends Food Sci Technol 5:213–218

    Article  Google Scholar 

  7. Lauro M, Poutanen K, Forssell P (2000) Effect of partial gelatinization and lipid addition on α-amylolysis of barley starch granules. Cereal Chem 77:595–601

    Article  CAS  Google Scholar 

  8. Östman E (2003) Fermentation as a means of optimizing the glycaemic index-food mechanisms and metabolic merits with emphasis on lactic acid in cereal products. Lund University

    Google Scholar 

  9. Englyst HN, Kingman SM, Cummings JH (1992) Classification and measurement of nutritionally important starch fractions. Eur J Clin Nutr 46:S33–S50

    PubMed  Google Scholar 

  10. Liljeberg HG, Lönner CH, Björck IM (1995) Sourdough fermentation or addition of organic acids or corresponding salts to bread improves nutritional properties of starch in healthy humans. J Nutr 125:1503–1511

    CAS  PubMed  Google Scholar 

  11. Liljeberg H, Björck I (1998) Delayed gastric emptying rate may explain improved glycaemia in healthy subjects to a starchy meal with added vinegar. Eur J Clin Nutr 52:368–371

    Article  CAS  PubMed  Google Scholar 

  12. Ripari V (2019) Techno-functional role of exopolysaccharides in cereal-based, yogurt-like beverages. Beverages 5:16

    Article  CAS  Google Scholar 

  13. Manini F, Brasca M, Plumed-Ferrer C, Morandi S, Erba D, Casiraghi MC (2014) Study of the chemical changes and evolution of microbiota during sourdough like fermentation of wheat bran. Cereal Chem 91:342–349

    Article  CAS  Google Scholar 

  14. Mao M, Wang P, Shi K, Lu Z, Bie X, Zhao H, Zhang C, Lv F (2020) Effect of solid state fermentation by Enterococcus faecalis M2 on antioxidant and nutritional properties of wheat bran. J Cereal Sci 94:102997

    Article  CAS  Google Scholar 

  15. Zhao HM, Guo XN, Zhu KX (2017) Impact of solid state fermentation on nutritional, physical and flavor properties of wheat bran. Food Chem 217:28–36

    Article  CAS  PubMed  Google Scholar 

  16. Siragusa S, Di Cagno R, Ercolini D, Minervini F, Gobbetti M, De Angelis M (2009) Taxonomic structure and monitoring of the dominant population of lactic acid bacteria during wheat flour sourdough type I propagation using Lactobacillus sanfranciscensis starters. Appl Environ Microbiol 75:1099–1109

    Article  CAS  PubMed  Google Scholar 

  17. Gulati P, Sabillón L, Rose DJ (2018) Effects of processing method and solute interactions on pepsin digestibility of cooked proso millet flour. Food Res Int 109:583–588

    Article  CAS  PubMed  Google Scholar 

  18. Minervini F, Dinardo FR, Celano G, De Angelis M, Gobbetti M (2018) Lactic acid bacterium population dynamics in artisan sourdoughs over one year of daily propagations is mainly driven by flour microbiota and nutrients. Front Microbiol 9:1984

    Article  PubMed  PubMed Central  Google Scholar 

  19. Al-Mhanna NM, Huebner H, Buchholz R (2018) Analysis of the sugar content in food products by using gas chromatography mass spectrometry and enzymatic methods. Foods 7:185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Adebo OA, Oyeyinka SA, Adebiyi JA, Feng X, Wilkin JD, Kewuyemi YO, Abrahams AM, Tugizimana F (2021) Application of gas chromatography–mass spectrometry (GC-MS)-based metabolomics for the study of fermented cereal and legume foods: a review. Int J Food Sci Technol 56:1514–1534

    Article  CAS  Google Scholar 

  21. Rizzello CG, Nionelli L, Coda R, De Angelis M, Gobbetti M (2010) Effect of sourdough fermentation on stabilisation, and chemical and nutritional characteristics of wheat germ. Food Chem 119:1079–1089

    Article  CAS  Google Scholar 

  22. Coda R, Kianjam M, Pontonio E, Verni M, Di Cagno R, Katina K, Rizzello CG, Gobbetti M (2017) Sourdough-type propagation of faba bean flour: dynamics of microbial consortia and biochemical implications. Int J Food Microbiol 248:10–21

    Article  CAS  PubMed  Google Scholar 

  23. Rizzello CG, Cavoski I, Turk J, Ercolini D, Nionelli L, Pontonio E, De Angelis M, De Filippis F, Gobbetti M, Di Cagno R (2015) Organic cultivation of Triticum turgidum subsp. durum is reflected in the flour-sourdough fermentation-bread axis. Appl Environ Microbiol 81:3192–3204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Giannoccaro E, Wang YJ, Chen P (2008) Comparison of two HPLC systems and an enzymatic method for quantification of soybean sugars. Food Chem 106:324–330

    Article  CAS  Google Scholar 

  25. Perri G, Coda R, Rizzello CG, Celano G, Ampollini M, Gobbetti M, De Angelis M, Calasso M (2021) Sourdough fermentation of whole and sprouted lentil flours: In situ formation of dextran and effects on the nutritional, texture and sensory characteristics of white bread. Food Chem 355:129638

    Article  CAS  PubMed  Google Scholar 

  26. Perri G, Rizzello CG, Ampollini M, Celano G, Coda R, Gobbetti M, De Angelis M, Calasso M (2021) Bioprocessing of barley and lentil grains to obtain in situ synthesis of exopolysaccharides and composite wheat bread with improved texture and health properties. Foods 10:1489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hamad SH, Böcker G, Vogel RF, Hammes WP (1992) Microbiological and chemical analysis of fermented sorghum dough for Kisra production. Appl Microbiol Biotechnol 37:728–731

    Article  CAS  Google Scholar 

  28. Dinardo FR, Minervini F, De Angelis M, Gobbetti M, Gänzle MG (2019) Dynamics of Enterobacteriaceae and lactobacilli in model sourdoughs are driven by pH and concentrations of sucrose and ferulic acid. LWT – Food Sci Technol 114:108394

    Article  CAS  Google Scholar 

  29. Doyon G, Gaudreau G, St-Gelais D, Beaulieu Y, Randall CJ (1991) Simultaneous HPLC determination of organic acids, sugars and alcohols. Can Inst Food Sci Technol J 24:87–94

    Article  CAS  Google Scholar 

  30. Thiele C, Gänzle MG, Vogel RF (2002) Sample preparation for amino acid determination by integrated pulsed amperometric detection in foods. Anal Biochem 310:171–178

    Article  CAS  PubMed  Google Scholar 

  31. De Angelis M, Minervini F, Siragusa S, Rizzello CG, Gobbetti M (2019) Wholemeal wheat flours drive the microbiome and functional features of wheat sourdoughs. Int J Food Microbiol 302:35–46

    Article  PubMed  Google Scholar 

  32. Verni M, De Mastro G, De Cillis F, Gobbetti M, Rizzello CG (2019) Lactic acid bacteria fermentation to exploit the nutritional potential of Mediterranean faba bean local biotypes. Food Res Int 125:108571

    Article  CAS  PubMed  Google Scholar 

  33. Hernandez JL, González-Castro MJ, Alba IN, De La Cruz GC (1998) High-performance liquid chromatographic determination of mono-and oligosaccharides in vegetables with evaporative light-scattering detection and refractive index detection. J Chromatogr Sci 36:293–298

    Article  Google Scholar 

  34. Prosky L, Asp NG, Schweizer TF, DeVries JW, Furda I (1988) Determination of insoluble, soluble, and total dietary fibre in foods and food products. J Assoc Off Anal Chem 71:1017

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michela Verni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verni, M., Montemurro, M. (2024). Soluble Sugars and Polysaccharides. In: Gobbetti, M., Rizzello, C.G. (eds) Basic Methods and Protocols on Sourdough. Methods and Protocols in Food Science . Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3706-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3706-7_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3705-0

  • Online ISBN: 978-1-0716-3706-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation