Detection of dsRNA by Acridine Orange Staining

  • Protocol
  • First Online:
Double-Stranded RNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2771))

  • 542 Accesses

Abstract

Acridine orange is a nucleic acid binding dye that emits green fluorescence when bound to double-stranded DNA or RNA and red fluorescence when bound to single-stranded DNA or RNA under ultraviolet light. This unique characterization allows it to be used for distinguishing or visualization of dsRNA. Here, we present a convenient and efficient protocol for detecting dsRNA in polyacrylamide gels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 171.19
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Palmgren MG (1991) Acridine orange as a probe for measuring pH gradients across membranes: mechanism and limitations. Anal Biochem 192(2):316–321

    Article  CAS  PubMed  Google Scholar 

  2. Hitoshi Y, Lorens J, Kitada SI, Fisher J, LaBarge M, Ring HZ, Francke U, Reed JC, Kinoshita S, Nolan GP (1998) Toso, a cell surface, specific regulator of Fas-induced apoptosis in T cells. Immunity 8(4):461–471

    Article  CAS  PubMed  Google Scholar 

  3. Wainwright M (2001) Acridine-a neglected antibacterial chromophore. J Antimicrob Chemother 47(1):1–13

    Article  CAS  PubMed  Google Scholar 

  4. Browning CH, Cohen JB, Gaunt R, Gulbransen R (1997) Relationships between antiseptic action and chemical constitution with special reference to compounds of the pyridine, quinoline, acridine and phenazine series. Proc R Soc Lond Ser B 93(653):329–366

    Google Scholar 

  5. Von Bertalanffy L, Bickis I (1956) Identification of cytoplasmic basophilia (ribonucleic acid) by fluorescence microscopy. J Histochem Cytochem 4(5):481–493

    Article  CAS  Google Scholar 

  6. McMaster GK, Carmichael GG (1977) Analysis of single- and double-stranded nucleic acids on polyacrylamide and agarose gels by using glyoxal and acridine orange. Proc Natl Acad Sci 74(11):4835–4838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lillie RD, Conn HJ, Stotz EH, Emmel VM (1977) H. J. Conn’s biological stains: a handbook on the nature and uses of the dyes employed in the biological laboratory, 9th edn. Williams and Wilkins, Baltimore

    Google Scholar 

  8. Plemel JR, Caprariello AV, Keough MB, Henry TJ, Tsutsui S, Chu TH, Schenk GJ, Klaver R, Yong VW, Stys PK (2017) Unique spectral signatures of the nucleic acid dye acridine orange can distinguish cell death by apoptosis and necroptosis. J Cell Biol 216(4):1163–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jacobs BL, Langland JO (1996) When two strands are better than one: the mediators and modulators of the cellular responses to double-stranded RNA. Virology 219(2):339–349

    Article  CAS  PubMed  Google Scholar 

  10. Ablasser A, Bauernfeind F, Hartmann G, Latz E, Fitzgerald KA, Hornung V (2009) RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III–transcribed RNA intermediate. Nat Immunol 10(10):1065–1072

    Article  CAS  PubMed  Google Scholar 

  11. Carmichael GG, McMaster GK (1980) The analysis of nucleic acids in gels using glyoxal and acridine orange. Methods Enzymol 65(1):380–391

    Article  CAS  PubMed  Google Scholar 

  12. Bruno JG, Sincock SA, Stopa PJ (1996) Highly selective acridine and ethidium staining of bacterial DNA and RNA. Biotech Histochem 71(3):130–136

    Article  CAS  PubMed  Google Scholar 

  13. Pichlmair A, Schulz O, Tan CP, Rehwinkel J, Kato H, Takeuchi O, Akira S, Way M, Schiavo G, Reis e Sousa C (2009) Activation of MDA5 requires higher-order RNA structures generated during virus infection. J Virol 83(20):10761–10769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lauretti F, Lucas de Melo F, Benati FJ, de Mello Volotão E, Santos N, Linhares RE, Nozawa C (2003) Use of acridine orange staining for the detection of rotavirus RNA in polyacrylamide gels. J Virol Methods 114(1):29–35

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **aofei Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ma, T., Zhao, Y., Cheng, X. (2024). Detection of dsRNA by Acridine Orange Staining. In: Cheng, X., Wu, G. (eds) Double-Stranded RNA. Methods in Molecular Biology, vol 2771. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3702-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3702-9_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3701-2

  • Online ISBN: 978-1-0716-3702-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation