Oncogene-Driven Induction of Orthotopic Cholangiocarcinoma in Mice

  • Protocol
  • First Online:
Liver Carcinogenesis

Abstract

Cholangiocarcinoma (CCA) is a malignancy affecting the epithelial cells that line the bile ducts. This cancer shows a poor prognosis and current treatments remain inefficient. Orthotopic CCA mouse models are useful for the development of innovative therapeutic strategies. Here, we describe an orthotopic model of intrahepatic CCA that can be easily induced in mice within 5 weeks at a high incidence. It is achieved by expressing two oncogenes, namely, (i) the intracellular domain of the Notch1 receptor (NICD) and (ii) AKT, in hepatocytes by means of the slee** beauty transposon system. These plasmid vectors are delivered by hydrodynamic injection into the tail vein. The present chapter also describes how to perform magnetic resonance imaging (MRI) of the livers to visualize intrahepatic CCA nodules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 149.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 192.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Banales JM, Marin JJG, Lamarca A, Rodrigues PM, Khan SA, Roberts LR et al (2020) Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nat Rev Gastroenterol Hepatol 17(9):557–588

    Article  PubMed  PubMed Central  Google Scholar 

  2. Oh D-Y, He AR, Qin S, Chen L-T, Okusaka T, Vogel A et al (2022) Durvalumab plus gemcitabine and cisplatin in advanced biliary tract cancer. NEJM Evid 1(8):EVIDoa2200015

    Google Scholar 

  3. Oh DY, Lee KH, Lee DW, Yoon J, Kim TY, Bang JH et al (2022) Gemcitabine and cisplatin plus durvalumab with or without tremelimumab in chemotherapy-naive patients with advanced biliary tract cancer: an open-label, single-Centre, phase 2 study. Lancet Gastroenterol Hepatol 7(6):522–532

    Article  PubMed  Google Scholar 

  4. Loeuillard E, Fischbach SR, Gores GJ, Rizvi S (2019) Animal models of cholangiocarcinoma. Biochim Biophys Acta Mol basis Dis 1865(5):982–992

    Article  PubMed  Google Scholar 

  5. Fan B, Malato Y, Calvisi DF, Naqvi S, Razumilava N, Ribback S et al (2012) Cholangiocarcinomas can originate from hepatocytes in mice. J Clin Invest 122(8):2911–2915

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bonamassa B, Hai L, Liu D (2011) Hydrodynamic gene delivery and its applications in pharmaceutical research. Pharm Res 28(4):694–701

    Article  PubMed  Google Scholar 

  7. Zhang G, Gao X, Song YK, Vollmer R, Stolz DB, Gasiorowski JZ et al (2004) Hydroporation as the mechanism of hydrodynamic delivery. Gene Ther 11(8):675–682

    Article  PubMed  PubMed Central  Google Scholar 

  8. Liu F, Song Y, Liu D (1999) Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther 6(7):1258–1266

    Article  PubMed  Google Scholar 

  9. Zhang G, Budker V, Wolff JA (1999) High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA. Hum Gene Ther 10(10):1735–1737

    Article  PubMed  Google Scholar 

  10. Yamamoto M, **n B, Nishikawa Y (2019) Mouse model for hepatocellular carcinoma and Cholangiocarcinoma originated from mature hepatocytes. Methods Mol Biol 1905:221–236

    Article  PubMed  Google Scholar 

  11. Zender S, Nickeleit I, Wuestefeld T, Sorensen I, Dauch D, Bozko P et al (2013) A critical role for notch signaling in the formation of cholangiocellular carcinomas. Cancer Cell 23(6):784–795

    Article  PubMed  Google Scholar 

  12. Calvisi DF, Wang C, Ho C, Ladu S, Lee SA, Mattu S et al (2011) Increased lipogenesis, induced by AKT-mTORC1-RPS6 signaling, promotes development of human hepatocellular carcinoma. Gastroenterology 140(3):1071–1083

    Article  PubMed  Google Scholar 

  13. Mandlik DS, Mandlik SK, Choudhary HB (2023) Immunotherapy for hepatocellular carcinoma: current status and future perspectives. World J Gastroenterol 29(6):1054–1075

    Article  PubMed  PubMed Central  Google Scholar 

  14. Paillet J, Kroemer G, Pol JG (2020) Immune contexture of cholangiocarcinoma. Curr Opin Gastroenterol 36(2):70–76

    Article  PubMed  Google Scholar 

  15. Paillet J, Plantureux C, Levesque S, Le Naour J, Stoll G, Sauvat A et al (2021) Autoimmunity affecting the biliary tract fuels the immunosurveillance of cholangiocarcinoma. J Exp Med 218(10):e20200853

    Article  PubMed  PubMed Central  Google Scholar 

  16. Holsapple MP, West LJ, Landreth KS (2003) Species comparison of anatomical and functional immune system development. Birth Defects Res B Dev Reprod Toxicol 68(4):321–334

    Article  PubMed  Google Scholar 

  17. Kay MM, Mendoza J, Diven J, Denton T, Union N, La**ess M (1979) Age-related changes in the immune system of mice of eight medium and long-lived strains and hybrids. I. Organ, cellular, and activity changes. Mech Ageing Dev 11(5–6):295–346

    Article  PubMed  Google Scholar 

  18. Velardi A, Cooper MD (1984) An immunofluorescence analysis of the ontogeny of myeloid, T, and B lineage cells in mouse hemopoietic tissues. J Immunol 133(2):672–677

    Article  PubMed  Google Scholar 

  19. Ghia P, ten Boekel E, Rolink AG, Melchers F (1998) B-cell development: a comparison between mouse and man. Immunol Today 19(10):480–485

    Article  PubMed  Google Scholar 

  20. Holladay SD, Smialowicz RJ (2000) Development of the murine and human immune system: differential effects of immunotoxicants depend on time of exposure. Environ Health Perspect 108 Suppl 3(Suppl 3):463–473

    Article  PubMed  Google Scholar 

  21. Kincade PW (1981) Formation of B lymphocytes in fetal and adult life. Adv Immunol 31:177–245

    Article  PubMed  Google Scholar 

  22. Yant SR, Park J, Huang Y, Mikkelsen JG, Kay MA (2004) Mutational analysis of the N-terminal DNA-binding domain of slee** beauty transposase: critical residues for DNA binding and hyperactivity in mammalian cells. Mol Cell Biol 24(20):9239–9247

    Article  PubMed  PubMed Central  Google Scholar 

  23. Yokoo T, Kamimura K, Abe H, Kobayashi Y, Kanefuji T, Ogawa K et al (2016) Liver-targeted hydrodynamic gene therapy: recent advances in the technique. World J Gastroenterol 22(40):8862–8868

    Article  PubMed  PubMed Central  Google Scholar 

  24. Suda T, Liu D (2007) Hydrodynamic gene delivery: its principles and applications. Mol Ther 15(12):2063–2069

    Article  PubMed  Google Scholar 

  25. Sawyer GJ, Rela M, Davenport M, Whitehorne M, Zhang X, Fabre JW (2009) Hydrodynamic gene delivery to the liver: theoretical and practical issues for clinical application. Curr Gene Ther 9(2):128–135

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

J.G.P. is supported by the SIRIC Cancer Research and Personalized Medicine (CARPEM); Multi-Organism Institute (ITMO) Aviesan Cancer (National Alliance for Life Sciences and Health), Institut National du Cancer (INCa), and Fondation pour la Recherche Médicale (FRM). M.C.M. is supported by the SIRIC Cancer Research and Personalized Medicine (CARPEM). G.K. is supported by the Ligue contre le Cancer (équipe labellisée); Agence National de la Recherche (ANR) – Projets blancs; AMMICa US23/CNRS UMS3655; Association pour la recherche sur le cancer (ARC); Cancéropôle Ile-de-France; European Research Council Advanced Investigator Grant “ICD-Cancer,” FRM; a donation by Elior; Equipex Onco-Pheno-Screen; European Joint Programme on Rare Diseases (EJPRD); European Research Council (ICD-Cancer), European Union Horizon 2020 Projects Oncobiome and Crimson; Fondation Carrefour; Institut National du Cancer (INCa); Institut Universitaire de France; LabEx Immuno-Oncology (ANR-18-IDEX-0001); a Cancer Research ASPIRE Award from the Mark Foundation; the RHU Immunolife; Seerave Foundation; SIRIC Stratified Oncology Cell DNA Repair and Tumor Immune Elimination (SOCRATE); and SIRIC Cancer Research and Personalized Medicine (CARPEM).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Plantureux, C. et al. (2024). Oncogene-Driven Induction of Orthotopic Cholangiocarcinoma in Mice. In: Kroemer, G., Pol, J., Martins, I. (eds) Liver Carcinogenesis. Methods in Molecular Biology, vol 2769. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3694-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3694-7_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3693-0

  • Online ISBN: 978-1-0716-3694-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation