CRISPR-Cas9-Mediated Genome Editing in Paenibacillus polymyxa

  • Protocol
  • First Online:
Synthetic Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2760))

  • 530 Accesses

Abstract

In recent years, the clustered regularly interspaced palindromic repeats-Cas (CRISPR-Cas) technology has become the method of choice for precision genome editing in many organisms due to its simplicity and efficacy. Multiplex genome editing, point mutations, and large genomic modifications are attractive features of the CRISPR-Cas9 system. These applications facilitate both the ease and velocity of genetic manipulations and the discovery of novel functions. In this protocol chapter, we describe the use of a CRISPR-Cas9 system for multiplex integration and deletion modifications, and deletions of large genomic regions by the use of a single guide RNA (sgRNA), and, finally, targeted point mutation modifications in Paenibacillus polymyxa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 169.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jeong H, Choi SK, Ryu CM et al (2019) Chronicle of a soil bacterium: Paenibacillus polymyxa E681 as a Tiny Guardian of plant and human health. Front Microbiol 10:467

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rütering M, Schmid J, Rühmann B et al (2016) Controlled production of polysaccharides-exploiting nutrient supply for levan and heteropolysaccharide formation in Paenibacillus sp. Carbohydr Polym 148:326–334

    Article  PubMed  Google Scholar 

  3. Schilling C, Ciccone R, Sieber V et al (2020) Engineering of the 2,3-butanediol pathway of Paenibacillus polymyxa DSM 365. Metab Eng 61:381–388

    Article  CAS  PubMed  Google Scholar 

  4. Zarschler K, Janesch B, Zayni S et al (2009) Construction of a gene knockout system for application in Paenibacillus alvei CCM 2051T, exemplified by the S-layer glycan biosynthesis initiation enzyme WsfP. Appl Environ Microbiol 75:3077–3085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bin KS, Timmusk S (2013) A simplified method for gene knockout and direct screening of recombinant clones for application in Paenibacillus polymyxa. PLoS One 8:e68092

    Article  Google Scholar 

  6. Choi SK, Park SY, Kim R et al (2008) Identification and functional analysis of the fusaricidin biosynthetic gene of Paenibacillus polymyxa E681. Biochem Biophys Res Commun 365:89–95

    Article  CAS  PubMed  Google Scholar 

  7. Rütering M, Cress BF, Schilling M et al (2017) Tailor-made exopolysaccharides-CRISPR-Cas9 mediated genome editing in Paenibacillus polymyxa. Synth Biol 2:ysx007

    Article  Google Scholar 

  8. **ek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science (1979) 337:816–821

    CAS  Google Scholar 

  9. Garneau JE, Dupuis MÈ, Villion M et al (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468:67–71

    Article  CAS  PubMed  Google Scholar 

  10. Gasiunas G, Barrangou R, Horvath P et al (2012) Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A 109:E2579–E2586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Szostak JW, Orr-Weaver TL, Rothstein RJ et al (1983) The Double-Strand-Break repair model for recombination. Cell 33:25–35

    Article  CAS  PubMed  Google Scholar 

  12. Chayot R, Montagne B, Mazel D et al (2010) An end-joining repair mechanism in Escherichia coli. Proc Natl Acad Sci U S A 107:2141–2146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79:181–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bikard D, Jiang W, Samai P et al (2013) Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res 41:7429–7437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Qi LS, Larson MH, Gilbert LA et al (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Komor AC, Kim YB, Packer MS et al (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533:420–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Adiego-Pérez B, Randazzo P, Daran JM et al (2019) Multiplex genome editing of microorganisms using CRISPR-Cas. FEMS Microbiol Lett 366:fnz086

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tian J, **ng B, Li M et al (2022) Efficient large-scale and scarless genome engineering enables the construction and screening of Bacillus subtilis biofuel overproducers. Int J Mol Sci 23:4853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Baumgart M, Unthan S, Kloß R et al (2018) Corynebacterium glutamicum Chassis C1∗: building and testing a novel platform host for synthetic biology and industrial biotechnology. ACS Synth Biol 7:132–144

    Article  CAS  PubMed  Google Scholar 

  20. Fan X, Zhang Y, Zhao F et al (2020) Genome reduction enhances production of polyhydroxyalkanoate and alginate oligosaccharide in Pseudomonas mendocina. Int J Biol Macromol 163:2023–2031

    Article  CAS  PubMed  Google Scholar 

  21. Zhang F, Huo K, Song X et al (2020) Engineering of a genome-reduced strain Bacillus amyloliquefaciens for enhancing surfactin production. Microb Cell Factories 19:223

    Article  CAS  Google Scholar 

  22. Milunovic B, diCenzo GC, Morton RA et al (2014) Cell growth inhibition upon deletion of four toxin-antitoxin loci from the megaplasmids of Sinorhizobium meliloti. J Bacteriol 196:811–824

    Article  PubMed  PubMed Central  Google Scholar 

  23. diCenzo GC, Zamani M, Milunovic B et al (2016) Genomic resources for identification of the minimal N2-fixing symbiotic genome. Environ Microbiol 18:2534–2547

    Article  CAS  PubMed  Google Scholar 

  24. Schilling C, Koffas MAG, Sieber V et al (2021) Novel prokaryotic CRISPR-Cas12a-based tool for programmable transcriptional activation and repression. ACS Synth Biol 9:3353–3363

    Article  Google Scholar 

  25. Kim MS, Kim HR, Jeong DE et al (2021) Cytosine base editor-mediated multiplex genome editing to accelerate discovery of novel antibiotics in Bacillus subtilis and Paenibacillus polymyxa. Front Microbiol 12:691839

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cobb RE, Wang Y, Zhao H (2015) High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas System. ACS Synth Biol 4:723–728

    Article  CAS  PubMed  Google Scholar 

  27. Meliawati M, Teckentrup C, Schmid J (2022) CRISPR-Cas9-mediated large cluster deletion and multiplex genome editing in Paenibacillus polymyxa. ACS Synth Biol 11:77–84

    Article  CAS  PubMed  Google Scholar 

  28. Meliawati M, May T, Eckerlin J et al (2022) Insights in the complex DegU, DegS, and Spo0A regulation system of Paenibacillus polymyxa by CRISPR-Cas9-based targeted point mutations. Appl Environ Microbiol 88:e0016422

    Article  PubMed  Google Scholar 

  29. NEB protocol: PCR Using Q5® High-Fidelity DNA Polymerase (M0491). https://international.neb.com/protocols/2013/12/13/pcr-using-q5-high-fidelity-dna-polymerase-m0491. Accessed March 2023

  30. Bioline protocol: Accuzyme DNA polymerase. https://www.bioline.com/mwdownloads/download/link/id/2703/accuzyme_dna_polymerase_product_manual.pdf. Accessed March 2023

  31. Thermo Fischer Scientific protocol: GeneJET PCR purification kit. https://www.thermofisher.com/document-connect/document-connect.html?url=https://assets.thermofisher.com/TFS-Assets%2FLSG%2Fmanuals%2FMAN0012662_GeneJET_PCR_Purification_UG.pdf. Accessed March 2023

  32. NEB protocol: Monarch DNA Gel extraction kit protocol card https://international.neb.com/protocols/2015/11/23/monarch-dna-gel-extraction-kit-protocol-t1020. Accessed March 2023

  33. Microsynth protocol: Sanger sequencing. https://www.microsynth.com/files/Inhalte/PDFs/Sanger/UserGuide_EconomyRun.pdf. Accessed March 2023

  34. Promega protocol: GoTaq G2 green master mix. https://www.promega.de/-/media/files/resources/protocols/product-information-sheets/g/gotaq-g2-green-master-mix-protocol.pdf?rev=ba2e5156136b43068889f3c33c344240&la=en. Accessed March 2023

  35. Qiagen protocol: DNeasy Blood & Tissue Handbook. https://www.qiagen.com/us/resources/resourcedetail?id=68f29296-5a9f-40fa-8b3d-1c148d0b3030&lang=en. Accessed March 2023

Download references

Acknowledgments

This study is part of the German Federal Ministry of Education and Research (BMBF) funded project Polymore with the no. 031B0855A and by BASF SE, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Schmid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ravagnan, G., Meliawati, M., Schmid, J. (2024). CRISPR-Cas9-Mediated Genome Editing in Paenibacillus polymyxa. In: Braman, J.C. (eds) Synthetic Biology. Methods in Molecular Biology, vol 2760. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3658-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3658-9_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3657-2

  • Online ISBN: 978-1-0716-3658-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation