An Improved Method for Eliminating or Creating Intragenic Bacterial Promoters

  • Protocol
  • First Online:
Synthetic Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2760))

  • 544 Accesses

Abstract

Recent advances in genomic refactoring have been hindered by the ever-present complication of internal or cryptic transcriptional regulation. Typical approaches to these features have been to randomize or perform mass alterations to the gene sequences thought to contain the regulatory motifs; however, this approach can cause problems by altering translational speeds, introducing long distance DNA-DNA interaction effects, and inducing RNA toxicity. Previously, we developed a rational design approach named COdon Restrained Promoter SilEncing (CORPSE) which takes externally identified promoter sequences and uses position-specific scoring matrices as proxy promoter strengths to make minimal changes to promoter sequences to disable their activity. Additionally, through inverting our system we were also able to modify weak internal promoters to increase their activity. In this chapter, we augment our previous process with the biophysical model Promoter Calculator v1.0 developed by LaFleur et al. to combine promoter identification and activity prediction, with our algorithm to silently modify promoter sequences, to provide more robust promoter elimination and creation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 169.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Müller KM, Arndt KM (2012) Standardization in synthetic biology. In: Synthetic gene networks: methods and protocols, pp 23–43

    Chapter  Google Scholar 

  2. Del Vecchio D, Dy AJ, Qian Y (2016) Control theory meets synthetic biology. J R Soc Interface 13(120):20160380

    Article  PubMed  PubMed Central  Google Scholar 

  3. Temme K, Zhao D, Voigt CA (2012) Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca. Proc Natl Acad Sci U S A 109(18):7085–7090. https://doi.org/10.1073/pnas.1120788109

    Article  PubMed  PubMed Central  Google Scholar 

  4. Springman R, Molineux IJ, Duong C, Bull RJ, Bull JJ (2012) Evolutionary stability of a refactored phage genome. ACS Synth Biol 1(9):425–430. https://doi.org/10.1021/sb300040v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ghosh D, Kohli AG, Moser F, Endy D, Belcher AM (2012) Refactored M13 bacteriophage as a platform for tumor cell imaging and drug delivery. ACS Synth Biol 1(12):576–582. https://doi.org/10.1021/sb300052u

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chan LY, Kosuri S, Endy D (2005) Refactoring bacteriophage T7. Mol Syst Biol 1(2005):0018. https://doi.org/10.1038/msb4100025

    Article  CAS  Google Scholar 

  7. Song M, Sukovich DJ, Ciccarelli L, Mayr J, Fernandez-Rodriguez J, Mirsky EA, Tucker AC, Gordon DB, Marlovits TC, Voigt CA (2017) Control of type III protein secretion using a minimal genetic system. Nat Commun 8(1):14737. https://doi.org/10.1038/ncomms14737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Thomason MK, Bischler T, Eisenbart SK, Förstner KU, Zhang A, Herbig A, Nieselt K, Sharma CM, Storz G (2015) Global transcriptional start site map** using differential RNA sequencing reveals novel antisense RNAs in Escherichia coli. J Bacteriol 197(1):18–28. https://doi.org/10.1128/jb.02096-14

    Article  PubMed  Google Scholar 

  9. Logel DY, Jaschke PR (2020) A high-resolution map of bacteriophage ϕX174 transcription. Virology 547:47–56. https://doi.org/10.1016/j.virol.2020.05.008

    Article  CAS  PubMed  Google Scholar 

  10. Frumkin I, Lajoie MJ, Gregg CJ, Hornung G, Church GM, Pilpel Y (2018) Codon usage of highly expressed genes affects proteome-wide translation efficiency. Proc Natl Acad Sci 115(21):E4940–E4949. https://doi.org/10.1073/pnas.1719375115

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yu C-H, Dang Y, Zhou Z, Wu C, Zhao F, Sachs Matthew S, Liu Y (2015) Codon usage influences the local rate of translation elongation to regulate co-translational protein folding. Mol Cell 59(5):744–754. https://doi.org/10.1016/j.molcel.2015.07.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hanson G, Coller J (2018) Codon optimality, bias and usage in translation and mRNA decay. Nat Rev Mol Cell Biol 19(1):20–30

    Article  CAS  PubMed  Google Scholar 

  13. Gorochowski TE, Espah Borujeni A, Park Y, Nielsen AA, Zhang J, Der BS, Gordon DB, Voigt CA (2017) Genetic circuit characterization and debugging using RNA-seq. Mol Syst Biol 13(11):952

    Article  PubMed  PubMed Central  Google Scholar 

  14. Brophy JA, Voigt CA (2014) Principles of genetic circuit design. Nat Methods 11(5):508–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wright BW, Molloy MP, Jaschke PR (2022) Overlap** genes in natural and engineered genomes. Nat Rev Genet 23(3):154–168

    Article  CAS  PubMed  Google Scholar 

  16. Wright BW, Ruan J, Molloy MP, Jaschke PR (2020) Genome modularization reveals overlapped gene topology is necessary for efficient viral reproduction. ACS Synth Biol. https://doi.org/10.1021/acssynbio.0c00323

  17. Jaschke PR, Dotson GA, Hung KS, Liu D, Endy D (2019) Definitive demonstration by synthesis of genome annotation completeness. Proc Natl Acad Sci U S A 116(48):24206–24213. https://doi.org/10.1073/pnas.1905990116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Logel DY, Trofimova E, Jaschke PR (2022) Codon-restrained method for both eliminating and creating intragenic bacterial promoters. ACS Synth Biol. https://doi.org/10.1021/acssynbio.1c00359

  19. Vvedenskaya IO, Vahedian-Movahed H, Zhang Y, Taylor DM, Ebright RH, Nickels BE (2016) Interactions between RNA polymerase and the core recognition element are a determinant of transcription start site selection. Proc Natl Acad Sci 113(21):E2899–E2905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Feklistov A, Darst SA (2011) Structural basis for promoter− 10 element recognition by the bacterial RNA polymerase σ subunit. Cell 147(6):1257–1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lane WJ, Darst SA (2006) The structural basis for promoter− 35 element recognition by the group IV σ factors. PLoS Biol 4(9):e269

    Article  PubMed  PubMed Central  Google Scholar 

  22. LaFleur TL, Hossain A, Salis HM (2022) Automated model-predictive design of synthetic promoters to control transcriptional profiles in bacteria. Nat Commun 13(1):5159. https://doi.org/10.1038/s41467-022-32829-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul R. Jaschke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Trofimova, E., Logel, D.Y., Jaschke, P.R. (2024). An Improved Method for Eliminating or Creating Intragenic Bacterial Promoters. In: Braman, J.C. (eds) Synthetic Biology. Methods in Molecular Biology, vol 2760. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3658-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3658-9_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3657-2

  • Online ISBN: 978-1-0716-3658-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation