A Brain Ischemia-Reperfusion Model for the Study of Tau Phosphorylation and O-GlcNAcylation

  • Protocol
  • First Online:
Tau Protein

Abstract

Cerebral ischemia produces a decrease, loss, or instability of the assembly processes in the neuronal cytoskeleton, related to the alteration in the normal processes of phosphorylation of the Tau protein, triggering its hyperphosphorylation and altering the normal processes of formation of neuronal microtubules. Here we describe the methods used to study the impact of middle cerebral artery occlusion (MCAo) on neurological functions and Tau phosphorylation in Wistar rat brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 189.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 246.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Feigin VL, Forouzanfar MH, Krishnamurthi R, Mensah GA, Bennett DA, Moran AE et al (2014) Global and regional burden of stroke during 1990–2010: findings from the Global Burden of Disease Study 2010. Lancet 383(9913):245–254

    Article  PubMed  PubMed Central  Google Scholar 

  2. Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW et al (2021) Heart disease and stroke statistics—2021 update: a report from the American Heart Association. Circulation [Internet] 143(8). Available from: https://www.ahajournals.org/doi/10.1161/CIR.0000000000000950

  3. Rabinstein AA (2020) Update on treatment of acute ischemic stroke. Contin Lifelong Learn Neurol 26(2):268–286

    Article  Google Scholar 

  4. Haesebaert J, Nighoghossian N, Mercier C, Termoz A, Porthault S, Derex L et al (2018) Improving access to thrombolysis and inhospital management times in ischemic stroke: a stepped-wedge randomized trial. Stroke 49(2):405–411

    Article  PubMed  Google Scholar 

  5. Cardozo CF, Vera A, Quintana-Peña V, Arango-Davila CA, Rengifo J (2021) Regulation of Tau protein phosphorylation by glucosamine-induced O-GlcNAcylation as a neuroprotective mechanism in a brain ischemia-reperfusion model. Int J Neurosci 20:1–7

    Google Scholar 

  6. Chen X, Jiang H (2019) Tau as a potential therapeutic target for ischemic stroke. Aging 11(24):12827–12843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rengifo J, Arango-Dávila C, Cardozo Hernández C, Vera A (2015) “Cama quirúrgica para cirugía en pequeños animales”, República de Colombia, resolución Patente No. 63760, 4 de febrero de 2015

    Google Scholar 

  8. Garcia JH, Wagner S, Liu KF, Hu X (1995) Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke 26:627–635

    Article  CAS  PubMed  Google Scholar 

  9. Shimamura N, Matchett G, Tsubokawa T, Ohkuma H, Zhang J (2006) Comparison of a silicon-coated nylon suture to plain nylon suture in the rat middle cerebral artery occlusion model. J Neurosci Methods 156:161–165

    Article  CAS  PubMed  Google Scholar 

  10. Schallert T, Fleming SM, Leasure JL, Tillerson JL, Bland ST (2000) CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism and spinal cord injury. Neuropharmacology 39:777–787

    Article  CAS  PubMed  Google Scholar 

  11. Gharbawie O, Whishaw P, Whishaw IQ (2004) The topography of three-dimensional exploration: a new quantification of vertical and horizontal exploration, postural support, and exploratory bouts in the cylinder test. Behav Brain Res 151(1–2):125–135. https://doi.org/10.1016/j.bbr.2003.08.009

    Article  PubMed  Google Scholar 

  12. Schallert T, Upchurch M, Lobaugh N, Farrar SB, Spirduso WW, Gilliam P, Vaughn D, Wilcox RE (1982) Tactile extinction: distinguishing between sensorimotor and motor asymmetries in rats with unilateral nigrostriatal damage. Pharmacol Biochem Behav 16:455–462

    Article  CAS  PubMed  Google Scholar 

  13. Komotar RJ, Kim GH, Sughrue ME, Otten ML, Rynkowski MA, Kellner CP, Connolly ES (2007) Neurologic assessment of somatosensory dysfunction following an experimental rodent model of cerebral ischemia. Nat Protoc 2(10):2345–2347

    Article  CAS  PubMed  Google Scholar 

  14. Wahl F, Allix M, Plotkine M, Boulu RG (1992) Neurological and behavioral outcomes of focal cerebral ischemia in rats. Stroke 23:267–272

    Article  CAS  PubMed  Google Scholar 

  15. Belayev L, Busto R, Zhao W, Fernandez G, Ginsberg MD (1999) Middle cerebral artery occlusion in the mouse by intraluminal suture coated with poly-L-lysine: neurological and histological validation. Brain Res 833(2):181–190

    Article  CAS  PubMed  Google Scholar 

  16. Arango-Dávila CA, Pimienta HJ, Escobar MI (2002) Evaluación de un modelo de isquemia cerebral experimental en ratas. Salud UIS 34:195–201

    Google Scholar 

  17. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schallert T (2006) Behavioral tests for preclinical intervention assessment. NeuroRx 3(4):497–504

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gao H, Zhang M (2008) Asymmetry in the brain influenced the neurological deficits and infarction volume following the middle cerebral artery occlusion in rats. Behav Brain Funct 4:57. https://doi.org/10.1186/1744-9081-4-57

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Universidad Icesi and the Colombian Administrative Department of Science, Technology and Innovation (Colciencias) grants contracts No. 244-2010 and No.616-2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliana Rengifo-Gómez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Vera-González, A., Cardozo, C.F., Araque, E.V., Cruz, M.J., Arango-Davila, C.A., Rengifo-Gómez, J. (2024). A Brain Ischemia-Reperfusion Model for the Study of Tau Phosphorylation and O-GlcNAcylation. In: Smet-Nocca, C. (eds) Tau Protein. Methods in Molecular Biology, vol 2754. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3629-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3629-9_34

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3628-2

  • Online ISBN: 978-1-0716-3629-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation