Cultivation, Differentiation, and Lentiviral Transduction of Human-Induced Pluripotent Stem Cell (hiPSC)-Derived Glutamatergic Neurons for Studying Human Tau

  • Protocol
  • First Online:
Tau Protein

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2754))

Abstract

Tau pathology is a major hallmark of many neurodegenerative diseases summarized under the term tauopathies. In most of these disorders,  such as Alzheimer’s disease, the neuronal axonal microtubule-binding Tau protein becomes mislocalized to the somatodendritic compartment. In human disease, this missorting of Tau is accompanied by an abnormally high phosphorylation state of the Tau protein, and several downstream pathological consequences (e.g., loss of microtubules, degradation of postsynaptic spines, impaired synaptic transmission, neuronal death). While some mechanisms of Tau sorting, missorting, and associated pathologies have been addressed in rodent models, few studies have addressed human Tau in physiological disease-relevant human neurons. Thus, suitable human-derived in vitro models are necessary. This protocol provides a simple step-by-step protocol for generating homogeneous cultures of cortical glutamatergic neurons using an engineered Ngn2 transgene-carrying WTC11 iPSC line. We further demonstrate strategies to improve neuronal maturity, that is, synapse formation, Tau isoform expression, and neuronal activity by co-culturing hiPSC-derived glutamatergic neurons with mouse-derived astrocytes. Finally, we describe a simple protocol for high-efficiency lentiviral transduction of hiPSC-derived neurons at almost all stages of differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Binder LI, Frankfurter A, Rebhun LI (1985) The distribution of tau in the mammalian central nervous system. J Cell Biol 101:1371–1378

    Article  CAS  PubMed  Google Scholar 

  2. Barbier P, Zejneli O, Martinho M, Lasorsa A, Belle V, Smet-Nocca C, Tsvetkov PO, Devred F, Landrieu I (2019) Role of tau as a microtubule-associated protein: structural and functional aspects. Front Aging Neurosci 11:204. https://doi.org/10.3389/fnagi.2019.00204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Arendt T, Stieler JT, Holzer M (2016) Tau and tauopathies. Brain Res Bull 126:238–292. https://doi.org/10.1016/j.brainresbull.2016.08.018

    Article  CAS  PubMed  Google Scholar 

  4. Zempel H, Mandelkow E (2014) Lost after translation: missorting of Tau protein and consequences for Alzheimer disease. Trends Neurosci 37:721–732. https://doi.org/10.1016/j.tins.2014.08.004

    Article  CAS  PubMed  Google Scholar 

  5. Schützmann MP, Hasecke F, Bachmann S, Zielinski M, Hänsch S, Schröder GF, Zempel H, Hoyer W (2021) Endo-lysosomal Aβ concentration and pH trigger formation of Aβ oligomers that potently induce Tau missorting. Nat Commun 12:4634. https://doi.org/10.1038/s41467-021-24900-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zempel H, Luedtke J, Kumar Y, Biernat J, Dawson H, Mandelkow E, Mandelkow E-M (2013) Amyloid-β oligomers induce synaptic damage via Tau-dependent microtubule severing by TTLL6 and spastin. EMBO J 32:2920–2937. https://doi.org/10.1038/emboj.2013.207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zempel H, Mandelkow E-M (2015) Tau missorting and spastin-induced microtubule disruption in neurodegeneration: Alzheimer Disease and Hereditary Spastic Paraplegia. Mol Neurodegener 10:68. https://doi.org/10.1186/s13024-015-0064-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zempel H, Mandelkow E (2019) Mechanisms of axonal sorting of tau and influence of the axon initial segment on tau cell polarity. In: Takashima A, Wolozin B, Buee L (eds) Tau biology. Springer Singapore, Singapore, pp 69–77

    Chapter  Google Scholar 

  9. Li X, Kumar Y, Zempel H, Mandelkow E-M, Biernat J, Mandelkow E (2011) Novel diffusion barrier for axonal retention of tau in neurons and its failure in neurodegeneration. EMBO J 30:4825–4837. https://doi.org/10.1038/emboj.2011.376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. van Beuningen SFB, Will L, Harterink M, Chazeau A, van Battum EY, Frias CP, Franker MAM, Katrukha EA, Stucchi R, Vocking K, Antunes AT, Slenders L, Doulkeridou S, Sillevis Smitt P, Altelaar AFM, Post JA, Akhmanova A, Pasterkamp RJ, Kapitein LC, de Graaff E, Hoogenraad CC (2015) TRIM46 controls neuronal polarity and axon specification by driving the formation of parallel microtubule arrays. Neuron 88:1208–1226. https://doi.org/10.1016/j.neuron.2015.11.012

    Article  CAS  PubMed  Google Scholar 

  11. Zempel H, Dennissen FJA, Kumar Y, Luedtke J, Biernat J, Mandelkow E-M, Mandelkow E (2017) Axodendritic sorting and pathological missorting of tau are isoform-specific and determined by axon initial segment architecture. J Biol Chem 292:12192–12207. https://doi.org/10.1074/jbc.M117.784702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Andreadis A, Brown WM, Kosik KS (1992) Structure and novel exons of the human .tau. gene. Biochemistry 31:10626–10633. https://doi.org/10.1021/bi00158a027

    Article  CAS  PubMed  Google Scholar 

  13. Bullmann T, Holzer M, Mori H, Arendt T (2009) Pattern of tau isoforms expression during development in vivo. Int J Dev Neurosci 27:591–597. https://doi.org/10.1016/j.ijdevneu.2009.06.001

    Article  CAS  PubMed  Google Scholar 

  14. Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA (1989) Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron 3:519–526. https://doi.org/10.1016/0896-6273(89)90210-9

    Article  CAS  PubMed  Google Scholar 

  15. Bachmann S, Bell M, Klimek J, Zempel H (2021) Differential effects of the six human TAU isoforms: somatic retention of 2N-TAU and increased microtubule number induced by 4R-TAU. Front Neurosci 15:643115. https://doi.org/10.3389/fnins.2021.643115

    Article  PubMed  PubMed Central  Google Scholar 

  16. Muratore CR, Srikanth P, Callahan DG, Young-Pearse TL (2014) Comparison and optimization of hiPSC forebrain cortical differentiation protocols. PLoS One 9:e105807. https://doi.org/10.1371/journal.pone.0105807

    Article  PubMed  PubMed Central  Google Scholar 

  17. Nicholas CR, Chen J, Tang Y, Southwell DG, Chalmers N, Vogt D, Arnold CM, Chen Y-JJ, Stanley EG, Elefanty AG, Sasai Y, Alvarez-Buylla A, Rubenstein JLR, Kriegstein AR (2013) Functional maturation of hPSC-derived forebrain interneurons requires an extended timeline and mimics human neural development. Cell Stem Cell 12:573–586. https://doi.org/10.1016/j.stem.2013.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hayashi Y, Hsiao EC, Sami S, Lancero M, Schlieve CR, Nguyen T, Yano K, Nagahashi A, Ikeya M, Matsumoto Y, Nishimura K, Fukuda A, Hisatake K, Tomoda K, Asaka I, Toguchida J, Conklin BR, Yamanaka S (2016) BMP-SMAD-ID promotes reprogramming to pluripotency by inhibiting p16/INK4A-dependent senescence. Proc Natl Acad Sci 113:13057–13062. https://doi.org/10.1073/pnas.1603668113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kreitzer FR, Salomonis N, Sheehan A, Huang M, Park JS, Spindler MJ, Lizarraga P, Weiss WA, So P-L, Conklin BR (2013) A robust method to derive functional neural crest cells from human pluripotent stem cells. Am J Stem Cells 2:119–131

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Miyaoka Y, Chan AH, Judge LM, Yoo J, Huang M, Nguyen TD, Lizarraga PP, So P-L, Conklin BR (2014) Isolation of single-base genome-edited human iPS cells without antibiotic selection. Nat Methods 11:291–293. https://doi.org/10.1038/nmeth.2840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang C, Ward ME, Chen R, Liu K, Tracy TE, Chen X, **e M, Sohn PD, Ludwig C, Meyer-Franke A, Karch CM, Ding S, Gan L (2017) Scalable production of iPSC-derived human neurons to identify tau-lowering compounds by high-content screening. Stem Cell Rep 9:1221–1233. https://doi.org/10.1016/j.stemcr.2017.08.019

    Article  CAS  Google Scholar 

  22. Johnson MA, Weick JP, Pearce RA, Zhang S-C (2007) Functional neural development from human embryonic stem cells: accelerated synaptic activity via astrocyte coculture. J Neurosci 27:3069–3077. https://doi.org/10.1523/JNEUROSCI.4562-06.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pang ZP, Yang N, Vierbuchen T, Ostermeier A, Fuentes DR, Yang TQ, Citri A, Sebastiano V, Marro S, Südhof TC, Wernig M (2011) Induction of human neuronal cells by defined transcription factors. Nature 476:220–223. https://doi.org/10.1038/nature10202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Südhof TC, Wernig M (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463:1035–1041. https://doi.org/10.1038/nature08797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang Y, Pak C, Han Y, Ahlenius H, Zhang Z, Chanda S, Marro S, Patzke C, Acuna C, Covy J, Xu W, Yang N, Danko T, Chen L, Wernig M, Südhof TC (2013) Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron 78:785–798. https://doi.org/10.1016/j.neuron.2013.05.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bachmann S, Linde J, Bell M, Spehr M, Zempel H, Zimmer-Bensch G (2021) DNA methyltransferase 1 (DNMT1) shapes neuronal activity of human iPSC-derived glutamatergic cortical neurons. Int J Mol Sci 22:2034. https://doi.org/10.3390/ijms22042034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schmid B, Holst B, Poulsen U, Jørring I, Clausen C, Rasmussen M, Mau-Holzmann UA, Steeg R, Nuthall H, Ebneth A, Cabrera-Socorro A (2021) Generation of two gene edited iPSC-lines carrying a DOX-inducible NGN2 expression cassette with and without GFP in the AAVS1 locus. Stem Cell Res 52:102240. https://doi.org/10.1016/j.scr.2021.102240

    Article  CAS  PubMed  Google Scholar 

  28. Jiang W, Hua R, Wei M, Li C, Qiu Z, Yang X, Zhang C (2015) An optimized method for high-titer lentivirus preparations without ultracentrifugation. Sci Rep 5:13875. https://doi.org/10.1038/srep13875

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Magdalena Laugsch and Dr. Marlen Lauffer for their basic guidance and support in iPSC-related cell culture work. We thank Prof. Dr. Florian Klein (Institute of Virology, University Hospital Cologne) for providing lentiviral vectors and Lena Kluge and Helen Breuer for supporting the lentivirus production. We thank Prof. Dr. Brunhilde Wirth (Institute of Human Genetics, University Hospital Cologne) and Dr. Markus Chmielewski (Department I of Internal Medicine, University Hospital Cologne) for providing the HEK293T cell line. We thank Mhd. Aghyad Al-Kabbani for the methodological advice and critical manuscript proofreading. Our work is supported by the Koeln Fortune Program (Faculty of Medicine, University of Cologne), by the Else-Kröner-Fresenius-Stiftung, by a stipend from the Studienstiftung des deutschen Volkes, and by the Jürgen-Manchot-Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Zempel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Buchholz, S., Bell-Simons, M., Cakmak, C., Klimek, J., Gan, L., Zempel, H. (2024). Cultivation, Differentiation, and Lentiviral Transduction of Human-Induced Pluripotent Stem Cell (hiPSC)-Derived Glutamatergic Neurons for Studying Human Tau. In: Smet-Nocca, C. (eds) Tau Protein. Methods in Molecular Biology, vol 2754. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3629-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3629-9_31

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3628-2

  • Online ISBN: 978-1-0716-3629-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation