Detection of Glymphatic Outflow of Tau from Brain to Cerebrospinal Fluid in Mice

  • Protocol
  • First Online:
Tau Protein

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2754))

Abstract

Glymphatic system denotes a brain-wide pathway that eliminates extracellular solutes from brain. It is driven by the flow of brain interstitial fluid (ISF) and cerebrospinal fluid (CSF) via perivascular spaces. Glymphatic convective flow is driven by cerebral arterial pulsation, which is facilitated by a water channel, aquaporin-4 (AQP4) expressed in astrocytic end-foot processes. Since its discovery, the glymphatic system receives a considerable scientific attention due to its pivotal role in clearing metabolic waste as well as neurotoxic substances such as amyloid b peptide. Tau is a microtubule binding protein, however it is also physiologically released into extracellular fluids. The presence of tau in the blood stream indicates that it is eventually cleared from the brain to the periphery, however, the detailed mechanisms that eliminate extracellular tau from the central nervous system remained to be elucidated. Recently, we and others have reported that extracellular tau is eliminated from the brain to CSF by an AQP4 dependent mechanism, suggesting the involvement of the glymphatic system. In this chapter, we describe the detailed protocol of how we can assess glymphatic outflow of tau protein from brain to CSF in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 189.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 246.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, Nagelhus EA, Nedergaard M (2012) A Paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 4:147ra111. https://doi.org/10.1126/scitranslmed.3003748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Iliff JJ, Wang M, Zeppenfeld DM, Venkataraman A, Plog BA, Liao Y, Deane R, Nedergaard M (2013) Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain. J Neurosci 33:18190–18199. https://doi.org/10.1523/JNEUROSCI.1592-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mestre H, Hablitz LM, Xavier ALR, Feng W, Zou W, Pu T, Monai H, Murlidharan G, Rivera RMC, Simon MJ, Pike MM, Plá V, Du T, Kress BT, Wang X, Plog BA, Thrane AS, Lundgaard I, Abe Y, Yasui M, Thomas JH, **ao M, Hirase H, Asokan A, Iliff JJ, Nedergaard M (2018) Aquaporin-4-dependent glymphatic solute transport in the rodent brain. eLife 7:1–31. https://doi.org/10.7554/eLife.40070

    Article  Google Scholar 

  4. Ringstad G, Valnes LM, Dale AM, Pripp AH, Vatnehol SAS, Emblem KE, Mardal KA, Eide PK (2018) Brain-wide glymphatic enhancement and clearance in humans assessed with MRI. JCI Insight 3. https://doi.org/10.1172/jci.insight.121537

  5. **e L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, Donnell JO, Christensen DJ, Nicholson C, Iliff JJ, Takano T, Deane R, Nedergaard M (2013) Sleep drives metabolite clearance from the adult. Brain:373–378

    Google Scholar 

  6. Hablitz LM, Plá V, Giannetto M, Vinitsky HS, Stæger FF, Metcalfe T, Nguyen R, Benrais A, Nedergaard M (2020) Circadian control of brain glymphatic and lymphatic fluid flow. Nat Commun 11:4411. https://doi.org/10.1038/s41467-020-18115-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Burfeind KG, Murchison CF, Westaway SK, Simon MJ, Erten-Lyons D, Kaye JA, Quinn JF, Iliff JJ (2017) The effects of noncoding aquaporin-4 single-nucleotide polymorphisms on cognition and functional progression of Alzheimer’s disease. Alzheimer’s & Dementia Transl Res Clin Interv 3:348. https://doi.org/10.1016/J.TRCI.2017.05.001

    Article  Google Scholar 

  8. Zeppenfeld DM, Simon M, Haswell JD, D’Abreo D, Murchison C, Quinn JF, Grafe MR, Woltjer RL, Kaye J, Iliff JJ (2017) Association of perivascular localization of aquaporin-4 with cognition and Alzheimer disease in aging brains. JAMA Neurol 74:91. https://doi.org/10.1001/jamaneurol.2016.4370

    Article  PubMed  Google Scholar 

  9. Xu Z, **ao N, Chen Y, Huang H, Marshall C, Gao J, Cai Z, Wu T, Hu G, **ao M (2015) Deletion of aquaporin-4 in APP/PS1 mice exacerbates brain Aβ accumulation and memory deficits. Mol Neurodegener 10:58. https://doi.org/10.1186/s13024-015-0056-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Abe Y, Ikegawa N, Yoshida K, Muramatsu K, Hattori S, Kawai K, Murakami M, Tanaka T, Goda W, Goto M, Yamamoto T, Hashimoto T, Yamada K, Shibata T, Misawa H, Mimura M, Tanaka KF, Miyakawa T, Iwatsubo T, Hata JI, Niikura T, Yasui M (2020) Behavioral and electrophysiological evidence for a neuroprotective role of aquaporin-4 in the 5xFAD transgenic mice model. Acta Neuropathol Commun 8:1–15. https://doi.org/10.1186/s40478-020-00936-3

    Article  CAS  Google Scholar 

  11. Yamada K, Cirrito JR, Stewart FR, Jiang H, Finn MB, Holmes BB, Binder LI, Mandelkow E-M, Diamond MI, Lee VM-Y, Holtzman DM (2011) In vivo microdialysis reveals age-dependent decrease of brain interstitial fluid tau levels in P301S human Tau transgenic mice. J Neurosci 31:13110–13117. https://doi.org/10.1523/JNEUROSCI.2569-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yamada K, Holth JK, Liao F, Stewart FR, Mahan TE, Jiang H, Cirrito JR, Patel TK, Hochgräfe K, Mandelkow E-M, Holtzman DM (2014) Neuronal activity regulates extracellular tau in vivo. J Exp Med 211:387–393. https://doi.org/10.1084/jem.20131685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Frost B, Jacks RL, Diamond MI (2009) Propagation of Tau misfolding from the outside to the inside of a cell. J Biol Chem 284:12845–12852. https://doi.org/10.1074/jbc.M808759200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kfoury N, Holmes BB, Jiang H, Holtzman DM, Diamond MI (2012) Trans-cellular propagation of Tau aggregation by fibrillar species. J Biol Chem 287:19440–19451. https://doi.org/10.1074/jbc.M112.346072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Barthélemy NR, Horie K, Sato C, Bateman RJ (2020) Blood plasma phosphorylated-Tau isoforms track CNS change in Alzheimer’s disease. J Exp Med 217:1–12. https://doi.org/10.1084/JEM.20200861

    Article  Google Scholar 

  16. Yanamandra K, Patel TK, Jiang H, Schindler S, Ulrich JD, Boxer AL, Miller BL, Kerwin DR, Gallardo G, Stewart F, Finn MB, Cairns NJ, Verghese PB, Fogelman I, West T, Braunstein J, Robinson G, Keyser J, Roh J, Knapik SS, Hu Y, Holtzman DM (2017) Anti-tau antibody administration increases plasma Tau in transgenic mice and patients with tauopathy. Sci Transl Med 9. https://doi.org/10.1126/SCITRANSLMED.AAL2029

  17. Ishida K, Yamada K, Nishiyama R, Hashimoto T, Nishida I, Abe Y, Yasui MI (2022) Glymphatic system clears extracellular tau and protects from tau aggregation and neurodegeneration. J Exp Med 219. https://doi.org/10.1084/jem.20211275

  18. Harrison IF, Ismail O, Machhada A, Colgan N, Ohene Y, Nahavandi P, Ahmed Z, Fisher A, Meftah S, Murray TK, Ottersen OP, Nagelhus EA, O’Neill MJ, Wells JA, Lythgoe MF (2020) Impaired glymphatic function and clearance of tau in an Alzheimer’s disease model. Brain 143:2576. https://doi.org/10.1093/brain/awaa179

    Article  PubMed  PubMed Central  Google Scholar 

  19. Alshuhri MS, Gallagher L, Work LM, Holmes WM (2021) Direct imaging of glymphatic transport using H217O MRI. JCI Insight 6. https://doi.org/10.1172/jci.insight.141159

  20. Da Mesquita S, Louveau A, Vaccari A, Smirnov I, Cornelison RC, Kingsmore KM, Contarino C, Onengut-Gumuscu S, Farber E, Raper D, Viar KE, Powell Romie D, Baker W, Dabhi N, Bai R, Cao R, Hu S, Rich SS, Munson JM, Lopes MB, Overall CC, Acton ST, Kipnis J (2018) Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature 560:185–191. https://doi.org/10.1038/s41586-018-0368-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tanaka Y, Yamada K, Satake K, Nishida I, Heuberger M, Kuwahara T, Iwatsubo T (2019) Seeding activity-based detection uncovers the different release mechanisms of seed-competent Tau versus inert Tau via lysosomal exocytosis. Front Neurosci 13:1–7. https://doi.org/10.3389/fnins.2019.01258

    Article  Google Scholar 

  22. Aoyagi H, Hasegawa M, Tamaoka A (2007) Fibrillogenic nuclei composed of P301L mutant tau induce elongation of P301L tau but not wild-type tau. J Biol Chem 282:20309–20318. https://doi.org/10.1074/jbc.M611876200

    Article  CAS  PubMed  Google Scholar 

  23. Kress BT, Iliff JJ, **a M, Wang M, Wei Bs HS, Zeppenfeld D, **e L, Hongyi Kang BS, Xu Q, Liew JA, Plog BA, Ding F, PhD RD, Nedergaard M (2014) Impairment of paravascular clearance pathways in the aging brain. Ann Neurol 76:845–861. https://doi.org/10.1002/ana.24271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hablitz LM, Vinitsky HS, Sun Q, Stæger FF, Sigurdsson B, Mortensen KN, Lilius TO, Nedergaard M (2019) Increased glymphatic influx is correlated with high EEG delta power and low heart rate in mice under anesthesia. Sci Adv 5:eaav5447. https://doi.org/10.1126/sciadv.aav5447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported partially by JST CREST (Grant Number: JPMJCR18H3) (KY), the program for Brain Map** by Integrated Neurotechnologies for Disease Studies (Brain/MINDS) from Japan Agency for Medical Research and development, AMED (Grant Number: JP20dm0207073) (KY) and Grant-in-Aid for Scientific Research (C) (Grant Number:JP18K07388) (KY), the Collaborative Research Project (2021-20012)(2023-23012) of Brain Research Institute, Niigata University (KY), Grant-in-Aid for Scientific Research (B)(Grant Number:JP23H02792)(KY), NHMRC-AMED 2022 Dementia Collaborative Research Scheme from AMED (Grant Number: JP22jm0210103) (KY).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaoru Yamada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ishida, K., Yamada, K. (2024). Detection of Glymphatic Outflow of Tau from Brain to Cerebrospinal Fluid in Mice. In: Smet-Nocca, C. (eds) Tau Protein. Methods in Molecular Biology, vol 2754. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3629-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3629-9_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3628-2

  • Online ISBN: 978-1-0716-3629-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation