Approaches to Therapeutic Gene Editing in Alpha-1 Antitrypsin Deficiency

  • Protocol
  • First Online:
Alpha-1 Antitrypsin

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2750))

  • 347 Accesses

Abstract

Five distinct gene therapy approaches have been developed for treating AATD. These approaches include knockout of the mutant (PiZ) allele by introduction of double-strand breaks (DSBs) and subsequent creation of insertions and deletions (indels) by DSB repair, homology-directed repair (HDR) targeted to the mutation site, base editing, prime editing, and alternatively targeted knock-in techniques. Each approach will be discussed and a brief summary of a standard CRISPR–Cas9 targeting method will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 129.99
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 168.79
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ijaz F, Nakazato R, Setou M et al (2022) A pair of primers facing at the double-strand break site enables to detect NHEJ-mediated indel mutations at a 1-bp resolution. Sci Rep 12:11681

    Article  PubMed  PubMed Central  Google Scholar 

  2. Guo T, Feng YL, **ao JJ et al (2018) Harnessing accurate non-homologous end joining for efficient precise deletion in CRISPR/Cas9-mediated genome editing. Genome Biol 19:170

    Article  PubMed  PubMed Central  Google Scholar 

  3. Brazelton VA Jr, Zarecor S, Wright DA et al (2015) A quick guide to CRISPR sgRNA design tools. GM Crops Food 6:266–276

    Article  PubMed  Google Scholar 

  4. Ran FA, Hsu PD, Wright J et al (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308

    Article  PubMed  PubMed Central  Google Scholar 

  5. Song CQ, Wang D, Jiang T et al (2018) In vivo genome editing partially restores alpha1-antitrypsin in a murine model of AAT deficiency. Hum Gene Ther 29:853–860

    Article  PubMed  PubMed Central  Google Scholar 

  6. Carlson JA, Rogers BB, Sifers RN et al (1989) Accumulation of PiZ alpha 1-antitrypsin causes liver damage in transgenic mice. J Clin Invest 83:1183–1190

    Article  PubMed  PubMed Central  Google Scholar 

  7. Shen S, Sanchez ME, Blomenkamp K et al (2018) Amelioration of alpha-1 antitrypsin deficiency diseases with genome editing in transgenic mice. Hum Gene Ther 29:861–873

    Article  PubMed  Google Scholar 

  8. Stephens CJ, Kashentseva E, Everett W et al (2018) Targeted in vivo knock-in of human alpha-1-antitrypsin cDNA using adenoviral delivery of CRISPR/Cas9. Gene Ther 25:139–156

    Article  PubMed  PubMed Central  Google Scholar 

  9. Barzel A, Paulk NK, Shi Y et al (2015) Promoterless gene targeting without nucleases ameliorates haemophilia B in mice. Nature 517:360–364

    Article  PubMed  Google Scholar 

  10. Borel F, Tang Q, Gernoux G et al (2017) Survival advantage of both human hepatocyte xenografts and genome-edited hepatocytes for treatment of α-1 antitrypsin deficiency. Mol Ther 25:2477–2489

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gaudelli NM, Komor AC, Rees HA et al (2017) Programmable base editing of A⋅T to G⋅C in genomic DNA without DNA cleavage. Nature 551:464–471

    Article  PubMed  PubMed Central  Google Scholar 

  12. Komor AC, Kim YB, Packer MS et al (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533:420–424

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hess GT, Tycko J, Yao D et al (2017) Methods and applications of CRISPR-mediated base editing in eukaryotic genomes. Mol Cell 68:26–43

    Article  PubMed  PubMed Central  Google Scholar 

  14. Packer MS, Chowdhary V, Lung G et al (2022) Evaluation of cytosine base editing and adenine base editing as a potential treatment for alpha-1 antitrypsin deficiency. Mol Ther 30:1396–1406

    Article  PubMed  PubMed Central  Google Scholar 

  15. Werder RB, Kaserman JE, Packer MS et al (2021) Adenine base editing reduces misfolded protein accumulation and toxicity in alpha-1 antitrypsin deficient patient iPSC-hepatocytes. Mol Ther 29:3219–3229

    Article  PubMed  PubMed Central  Google Scholar 

  16. Anzalone AV, Randolph PB, Davis JR et al (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576:149–157

    Article  PubMed  PubMed Central  Google Scholar 

  17. Habib O, Habib G, Hwang GH et al (2022) Comprehensive analysis of prime editing outcomes in human embryonic stem cells. Nucleic Acids Res 50:1187–1197

    Article  PubMed  PubMed Central  Google Scholar 

  18. Liu P, Liang SQ, Zheng C et al (2021) Improved prime editors enable pathogenic allele correction and cancer modelling in adult mice. Nat Commun 12:2121

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terence R. Flotte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gruntman, A.M., Xue, W., Flotte, T.R. (2024). Approaches to Therapeutic Gene Editing in Alpha-1 Antitrypsin Deficiency. In: Bristow, C.L. (eds) Alpha-1 Antitrypsin. Methods in Molecular Biology, vol 2750. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3605-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3605-3_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3604-6

  • Online ISBN: 978-1-0716-3605-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation