Reduced-Sodium Meat Products

  • Chapter
  • First Online:
Functional Meat Products

Abstract

Mohr’s argentometric method is based on precipitation titration in a neutral or alkaline medium containing potassium chromate as the indicator. Briefly, chlorides bind to silver ions from titrant silver nitrate solution, generating white silver chloride precipitates. When all existing chloride in the sample reacts with silver, it binds to chromate, yielding brick-red coloration. Although recent techniques have been emerging for sodium chloride determination in meat products, Mohr’s method is still extensively used due mainly to its ease and simple execution and cost-effectiveness, requiring little low-cost equipment. Nevertheless, there is no detailed guideline for Mohr’s method to date. Thus, this chapter aims to share a practical protocol built from classical official Mohr’s methods and performed routinely in the laboratory with tips based on day-by-day experience, allowing technique standardization and avoiding successive errors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 149.79
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 192.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dietary Guidelines Advisory Committee (2020) Scientific report of the 2020 dietary guidelines advisory committee: advisory report to the secretary of agriculture and the secretary of health and human services. U.S. Department of Agriculture, Agricultural Research Service, Washington, DC. https://doi.org/10.52570/DGAC2020

    Book  Google Scholar 

  2. Hunter RW, Dhaun N, Bailey MA (2022) The impact of excessive salt intake on human health. Nat Rev Nephrol 18:321–335

    Article  PubMed  Google Scholar 

  3. FSA (2018) Salt. https://www.food.gov.uk/business-guidance/salt

  4. World Health Organization (2020) Salt reduction. https://www.who.int/news-room/fact-sheets/detail/salt-reduction

  5. Bernardo F, Moreira JL, Gonçalves C, Pena MJ, Pinho O, Martins R, Alves A (2022) Saltquanti – development of a new portable device to analyse salt content in food. J Food Compos Anal 105:104239

    Article  CAS  Google Scholar 

  6. Honrado A, Aínsa A, Marquina PL, Beltran JA, Calanche JB (2022) Low-fat fresh sausage from rabbit meat: an alternative to traditional rabbit consumption. Meat Sci 194:108973

    Article  CAS  PubMed  Google Scholar 

  7. Koral S, Tufan B, Scavnicar A, Kocar D, Pompe M, Köse S (2013) Investigation of the contents of biogenic amines and some food safety parameters of various commercially salted fish products. Food Control 32:597–606

    Article  CAS  Google Scholar 

  8. Kowalczyk M, Domaradzki P, Materska M, Florek M, Kaliniak-Dziura A, Skałecki P, Zółkiewski P, Grenda T, Pabich M (2023) Effect of the addition of chokeberry leaf extract on the physicochemical and sensory properties of burgers from dark cutting veal. Food Chem 399:133978

    Article  CAS  PubMed  Google Scholar 

  9. Lee Y, Kung H, Cheng Q, Lin C, Tseng C, Chiu K, Tsai Y (2022) Effects of high-hydrostatic-pressure processing on the chemical and microbiological quality of raw ready-to-eat hard clam marinated in soy sauce during cold storage. LWT – Food Sci Technol 159:113229

    Article  CAS  Google Scholar 

  10. Martins LHS, Moreira Neto J, Lopes AS, Rodrigues AMC, Carvalho AV, Oliveira JAR, Moreira DKT (2017) Study of preparation, composition and moisture sorption isotherm of Amazon River shrimp meal. LWT Food Sci Technol 79:376–383. https://doi.org/10.1016/j.lwt.2017.01.054

    Article  CAS  Google Scholar 

  11. Mutz YS, Rosario DKA, Bernardo YAA, Vieira CP, Moreira RVP, Bernardes PC, Conte-Junior CA (2022) Unravelling the relation between natural microbiota and biogenic amines in Brazilian dry-cured loin: a chemometric approach. International J Food Sci Technol 57:1621–1629

    Article  CAS  Google Scholar 

  12. Öztürk-Kerimoğlu B, Serdaroğlu M (2019) Powder/gelled inulin and sodium carbonate as novel phosphate replacers in restructured chicken steaks. J Food Process Preserv 43:e14243

    Article  Google Scholar 

  13. Sanches MAR, Lapinskas NM, Barretto TL, Silva-Barretto AC, Telis-Romero J (2022) Improving salt diffusion by ultrasound application during wet salting of pork meat: A mathematical modeling approach. J Food Process Eng:e14143

    Google Scholar 

  14. Pennecchi FR, Kuselman I, Di Rocco A, Hibbert DB, Semenova AA (2021) Risks in a sausage conformity assessment due to measurement uncertainty, correlation and mass balance constraint. Food Control 125:107949

    Article  CAS  Google Scholar 

  15. Yalçın MY, Seker M (2016) Effect of salt and moisture content reduction on physical and microbiological properties of salted, pressed and freeze dried Turkey meat. LWT – Food Sci Technol 68:153–159

    Article  Google Scholar 

  16. AOAC (2012) Official methods of analysis, 19th edn. Gaithersburg, AOAC International

    Google Scholar 

  17. Skoog DA, West DM, Holler FJ (eds) (1996) Fundamentals of analytical chemistry. Thomson Learning, USA

    Google Scholar 

  18. LANARA (1981) Métodos Analíticos Oficiais para Controle de Produtos de Origem Animal e seus ingredientes – 11 Métodos Físicos e Químicos. Laboratório Nacional de Referência Animal. Ministério da Agricultura e do Abastecimento, Secretaria Nacional de Defesa Agropecuária, Brasília, DF

    Google Scholar 

  19. Barretto TL, Bellucci ERB, Barbosa RD, Pollonio MAR, Romero JT, Barretto ACS (2020) Impact of ultrasound and potassium chloride on the physicochemical and sensory properties in low sodium restructured cooked ham. Meat Sci 165:108130

    Article  CAS  PubMed  Google Scholar 

  20. Domínguez R, Pateiro M, Pérez-Santaescolástica C, Munekata PES, Lorenzo JM (eds) (2017) Salt reduction strategies in meat products made from whole pieces. Nova Science Publishers, New York

    Google Scholar 

  21. FDA (2019) Listing of specific substances affirmed as GRAS. Potassium Chloride. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=184.1622&SearchTerm=potassium%20chloride

  22. Saldaña E, Merlo TC, Patinho I, Rios-Mera JD, Contreras-Castillo CJ, Selani MM (2021) Use of sensory science for the development of healthier processed meat products: a critical opinion. Curr Opin Food Sci 40:13–19

    Article  Google Scholar 

  23. Inguglia ES, Zhang Z, Tiwari BK, Kerry JP, Burgess C (2017) Salt reduction strategies in processed meat products: a review. Trends Food Sci Technol 59:70–78

    Article  CAS  Google Scholar 

  24. Afzal A, Saeed F, Afzaal M, Maan AA, Ikram A, Hussain M, Usman I, Shah YA, Anjum W (2022) The chemistry of flavor formation in meat and meat products in response to different thermal and non-thermal processing techniques: an overview. J Food Process Preserv 46:e16847

    Article  CAS  Google Scholar 

  25. Pateiro M, Munekata PES, Cittadini A, Domínguez R, Lorenzo JM (2021) Metallic-based salt substitutes to reduce sodium content in meat products. Curr Opin Food Sci 38:21–31

    Article  CAS  Google Scholar 

  26. Orel R, Tabilo-Munizaga G, Cepero-Betancourt Y, Reyes-Parra JE, Badillo-Ortiz A, Pérez-Won M (2020) Effects of high hydrostatic pressure processing and sodium reduction on physicochemical properties, sensory quality, and microbiological shelf life of ready-to-eat chicken breasts. LWT – Food Sci Technol 127:109352

    Article  CAS  Google Scholar 

  27. Zhou Y, Watkins P, Oiseth S, Cochet-Broch M, Sikes AL, Chen C, Buckow R (2021) High pressure processing improves the sensory quality of sodium-reduced chicken sausage formulated with three anion types of potassium salt. Food Control 126:108008

    Article  CAS  Google Scholar 

  28. Barretto TL, Pollonio MAR, Telis-Romero J, Barretto ACS (2018) Improving sensory acceptance and physicochemical properties by ultrasound application to restructured cooked ham with salt (NaCl) reduction. Meat Sci 145:55–62

    Article  CAS  PubMed  Google Scholar 

  29. Zhou Y, Wang Y, Pan Q, Wang X, Li P, Cai K, Chen C (2020) Effect of salt mixture on flavor of reduced-sodium restructured bacon with ultrasound treatment. Food Sci Nutr:8:3857–8:3871

    Google Scholar 

  30. Leães YSV, Pinton MB, Rosa CTA, Robalo SS, Wagner R, Menezes CR, Barin JS, Campagnol PCB, Cichoski AJ (2020) Ultrasound and basic electrolyzed water: a green approach to reduce the technological defects caused by NaCl reduction in meat emulsions. Ultrason Sonochem 61:104830

    Article  Google Scholar 

  31. Souza HB, Henry FC, Martins MLL, Quirino CR, Maia Júnior JA, Santos Júnior AC, Oliveira TC, Jesus EFO (2019) Irradiation of reduced-sodium uncooked lamb sausage: antimicrobial efficacy and physicochemical impact. Braz J Microbiol 50:231–235

    Article  PubMed  Google Scholar 

  32. Rodrigues I, Baldini A, Pires M, Barros JC, Fregonesi R, Lima CG, Trindade MA (2021) Gamma ray irradiation: a new strategy to increase the shelf life of salt-reduced hot dog wieners. LWT – Food Sci Technol 135:110265

    Article  CAS  Google Scholar 

  33. Bhat ZF, Morton JD, Mason SL, Bekhit AEA (2020) The application of pulsed electric field as a sodium reducing strategy for meat products. Food Chem 306:125622

    Article  CAS  PubMed  Google Scholar 

  34. Rosa JL, Rios-Mera JD, Castillo CJC, Lorenzo JM, Pinton MB, Santos BA, Correa LP, Henn AS, Cichoski AJ, Flores EMM, Campagnol PCB (2023) High-power ultrasound, micronized salt, and low KCl level: an effective strategy to reduce the NaCl content of Bologna-type sausages by 50%. Meat Sci 195:109012

    Article  PubMed  Google Scholar 

  35. Szerman N, Ferrari R, Sancho AM, Vaudagna S (2019) Response surface methodology study on the effects of sodium chloride and sodium tripolyphosphate concentrations, pressure level and holding time on beef patties properties. LWT 109:93–100

    Article  CAS  Google Scholar 

  36. Monteiro MLG, Mársico ET, Cunha LCM, Rosenthal A, Deliza R, Conte-Junior CA (2021) Application of emerging non-thermal technologies to sodium reduction in ready-to-eat fish products. Innov Food Sci Emerg Technol 71:102710

    Article  CAS  Google Scholar 

  37. Santos EA, Evangelista ZR, Bueno JA, Monteiro MLG, Mársico ET, Bataus LA, Fernandes KF, Caliari M, Soares Júnior MS (2022) Effects of ultrasound assisted emulsification on overall quality of reduced-sodium "spam-like" products elaborated with tilapia filleting by-products. J Food Process Preserv 46:e16726

    Google Scholar 

  38. Wang X, Yi Y, Guo C, Wang X, Yu J, **a S (2023) Enhanced sodium release and saltiness perception of surimi gels by microwave combined with water bath heating. Food Hydrocoll 134:108018

    Article  CAS  Google Scholar 

  39. Clariana M, Guerrero L, Sárraga C, Díaz I, Valero A, García-Regueiro JA (2011) Influence of high pressure application on the nutritional, sensory and microbiological characteristics of sliced skin vacuum packed dry-cured ham. Effects along the storage period. Innov Food Sci Emerg Technol 12:456–465

    Article  CAS  Google Scholar 

  40. Yu Z, Su Y, Zhang YL, Zhu PY, Mei ZL, Zhou XN, Yu H (2021) Potential use of ultrasound to promote fermentation, maturation, and properties of fermented foods: a review. Food Chem 357:129805

    Article  CAS  PubMed  Google Scholar 

  41. Kuo W, Lee Y (2014) Effect of food matrix on saltiness perception-implications for sodium reduction. Compr Rev Food Sci Food Saf 13:906–923

    Article  CAS  Google Scholar 

  42. Hu Y, Zhang L, Badar IH, Liu Q, Liu H, Chen Q, Kong B (2022) Insights into the flavor perception and enhancement of sodium-reduced fermented foods: a review. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2022.2121909

  43. Ganesan B, Brown K, Irish DA, Brothersen C, McMahon DJ (2014) Manufacture and sensory analysis of reduced- and low-sodium Cheddar and mozzarella cheeses. J Dairy Sci 97:1970–1982

    Article  CAS  PubMed  Google Scholar 

  44. Frag EY, El-Zaher NA, Elashery SEA (2020) Carbon thick sheet potentiometric sensor for selective determination of silver ions in X-ray photographic film. Microchem J 155:104750

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Monteiro, M.L.G., Mársico, E.T., Conte-Junior, C.A. (2024). Reduced-Sodium Meat Products. In: Verruck, S., Teixeira Marsico, E. (eds) Functional Meat Products. Methods and Protocols in Food Science . Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3573-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3573-5_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3572-8

  • Online ISBN: 978-1-0716-3573-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation