RNA Double-Helix Hybridization Measured by Fluorescence Correlation Spectroscopy

  • Protocol
  • First Online:
Bacterial Regulatory RNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2741))

  • 454 Accesses

Abstract

RNA double-strand hybridization is a key player in gene expression regulation. Single-stranded RNA of up to 300 nucleotides forms Watson-Crick base pairs with complementary messenger RNA. Fluorescence-based single-molecule methods allow to study RNA-RNA interaction under physiological conditions. Here is described, how the dissociation constant of RNA double strands can be determined by applying fluorescence correlation spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cech TR, Steitz JA (2014) The noncoding RNA revolution-trashing old rules to forge new ones. Cell 157:77–94

    Article  CAS  PubMed  Google Scholar 

  2. Wilson R, Doudna JA (2013) Molecular mechanisms of RNA interference. Annu Rev Biophys 42:217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ul Haq I, Brantl S, Müller P (2021) A new role for SR1 from Bacillus subtilis: regulation of sporulation by inhibition of kinA translation. Nucleic Acids Res 49:10589–10603

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mann M, Wright PR, Backofen R (2017) IntaRNA 2.0: enhanced and customizable prediction of RNA–RNA interactions. Nucleic Acids Res 45:W435–WW39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Werner A, Konarev PV, Svergun DI, Hahn U (2009) Characterization of a fluorophore binding RNA aptamer by fluorescence correlation spectroscopy and small angle X-ray scattering. Anal Biochem 389:52–62

    Article  CAS  PubMed  Google Scholar 

  6. Werner A, Hahn U (2009) Fluorescence correlation spectroscopy based characterisation of aptamer ligand interaction. Meth Mol Biol 535:107–114

    Article  CAS  Google Scholar 

  7. Eydeler K, Magbanua E, Werner A, Ziegelmüller P, Hahn U (2009) Fluorophore binding aptamers as a tool for RNA visualization. Biophys J 96:3703–3707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Werner A, Skakun VV, Meyer C, Hahn U (2011) RNA dimerization monitored by fluorescence correlation spectroscopy. Eur Biophys J 40:907–921

    Article  CAS  PubMed  Google Scholar 

  9. Rigler R, Elson ES (eds) (2001) Fluorescence correlation spectroscopy: theory and applications. Springer, Berlin

    Google Scholar 

  10. Magde D, Elson ES, Webb WW (1972) Thermodynamic fluctuations in a reacting system – measurement by fluorescence correlation spectroscopy. Phys Rev Lett 29:705–708

    Article  CAS  Google Scholar 

  11. Weisshart K, Jungel V, Briddon SJ (2004) The LSM 510 META – ConfoCor 2 system: an integrated imaging and spectroscopic platform for single-molecule detection. Curr Pharm Biotechnol 5:135–154

    Article  CAS  PubMed  Google Scholar 

  12. Fradin C, Zbaida D, Elbaum M (2005) Dissociation of nuclear import cargo complexes by the protein Ran: a fluorescence correlation spectroscopy study. C R Biol 328:1073–1082

    Article  CAS  PubMed  Google Scholar 

  13. Werner A, Skakun VV, Ziegelmüller P, Hahn U (2012) A fluorescence correlation spectroscopy-based enzyme assay for human Dicer. Biol Chem 393:187–193

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne Werner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Werner, A. (2024). RNA Double-Helix Hybridization Measured by Fluorescence Correlation Spectroscopy. In: Arluison, V., Valverde, C. (eds) Bacterial Regulatory RNA. Methods in Molecular Biology, vol 2741. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3565-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3565-0_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3564-3

  • Online ISBN: 978-1-0716-3565-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation