Wolbachia Transinfection Via Embryonic Microinjection

  • Protocol
  • First Online:
Wolbachia

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2739))

Abstract

The process of transferring Wolbachia from one species to another to establish a stable, maternally inherited infection in the target species is known as transinfection. The success of transinfection is primarily achieved through embryonic microinjection, which is the most direct and efficient means of delivering Wolbachia into the germline of the target species and establishing stable maternal transmission. For the fundamental studies, transinfection is often used to characterize Wolbachia-host interactions, including Wolbachia host range, the role of host or bacterial factors in symbiosis, and evolution of Wolbachia-host associations. For the applied studies, use of transinfection to generate a novel infection in the target species is the first step to build the weapon for both population replacement and population suppression for controlling insect pests or their transmitted diseases. For the primary dengue vector Aedes aegypti and Anopheles vectors of malaria, which either do not naturally carry Wolbachia or are infected with strains that lack necessary features for implementation, transinfection can be established by introducing a novel strain capable of inducing both cytoplasmic incompatibility (CI) and pathogen blocking. For A. albopictus and Culex mosquito species, which naturally harbor CI-inducing Wolbachia, transinfection can be achieved by either introducing a novel strain to generate superinfection or replacing the native infection with a different Wolbachia strain in a symbiont-free line, which is derived from antibiotic treatment of the wild type. Here, we use A. aegypti as an example to describe the Wolbachia transinfection method, which can be adapted to other insect species, such as planthoppers, according to their specific developmental requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Flores HA, Taneja de Bruyne J, O’Donnell TB et al (2020) Multiple Wolbachia strains provide comparative levels of protection against dengue virus infection in Aedes aegypti. PLoS Pathog 16:e1008433. https://doi.org/10.1371/journal.ppat.1008433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Veneti Z, Clark ME, Karr TL et al (2004) Heads or tails: host-parasite interactions in the drosophila-Wolbachia system. Appl Environ Microbiol 70:5366–5372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zheng X, Zhang D, Li Y et al (2019) Incompatible and sterile insect techniques combined eliminate mosquitoes. Nature 572:56–61. https://doi.org/10.1038/s41586-019-1407-9

    Article  CAS  PubMed  Google Scholar 

  4. Utarini A, Indriani C, Ahmad RA et al (2021) Efficacy of Wolbachia-infected mosquito deployments for the control of dengue. N Engl J Med 384:2177–2186. https://doi.org/10.1056/NEJMoa2030243

    Article  PubMed  PubMed Central  Google Scholar 

  5. Liang X, Tan CH, Sun Q et al (2022) Wolbachia wAlbB remains stable in Aedes aegypti over 15 years but exhibits genetic background-dependent variation in virus blocking. PNAS Nexus 1. https://doi.org/10.1093/pnasnexus/pgac203

  6. Crawford JE, Clarke DW, Criswell V et al (2020) Efficient production of male Wolbachia-infected Aedes aegypti mosquitoes enables large-scale suppression of wild populations. Nat Biotechnol 38:482–492. https://doi.org/10.1038/s41587-020-0471-x

    Article  CAS  PubMed  Google Scholar 

  7. Bian G, Joshi D, Dong Y et al (2013) Wolbachia invades Anopheles stephensi populations and induces refractoriness to plasmodium infection. Science 340:748–751. https://doi.org/10.1126/science.1236192

    Article  CAS  PubMed  Google Scholar 

  8. ** Z, Khoo CC, Dobson SL (2005) Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Science 310:326–328

    Article  CAS  PubMed  Google Scholar 

  9. Zeng Q, She L, Yuan H et al (2022) A standalone incompatible insect technique enables mosquito suppression in the urban subtropics. Commun Biol 5:1419. https://doi.org/10.1038/s42003-022-04332-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vorsino AE, ** Z (2022) A mass rearing cost calculator for the control of Culex quinquefasciatus in Hawai’i using the incompatible insect technique. Parasit Vectors 15:453. https://doi.org/10.1186/s13071-022-05522-1

    Article  PubMed  PubMed Central  Google Scholar 

  11. Boyle L, O’Neill SL, Robertson HM et al (1993) Interspecific and intraspecific horizontal transfer of Wolbachia in Drosophila. Science 260:1796–1799

    Google Scholar 

  12. Sasaki T, Kubo T, Ishikawa H (2002) Interspecific transfer of Wolbachia between two lepidopteran insects expressing cytoplasmic incompatibility: a Wolbachia variant naturally infecting Cadra cautella causes male killing in Ephestia kuehniella. Genetics 162:1313–1319

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kang L, Ma X, Cai L et al (2003) Superinfection of Laodelphax striatellus with Wolbachia from Drosophila simulans. Heredity 90:71–76

    Article  CAS  PubMed  Google Scholar 

  14. Gong JT, Li Y, Li TP et al (2020) Stable introduction of plant-virus-inhibiting Wolbachia into Planthoppers for Rice protection. Curr Biol 30(4837–4845):e4835. https://doi.org/10.1016/j.cub.2020.09.033

    Article  CAS  Google Scholar 

  15. ** Z, Dean JL, Khoo C et al (2005) Generation of a novel Wolbachia infection in Aedes albopictus (Asian tiger mosquito) via embryonic microinjection. Insect Biochem Mol Biol 35:903–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Illmensee K, Mahowald AP (1974) Transplantation of posterior polar plasm in Drosophila. Induction of germ cells at the anterior pole of the egg. Proc Natl Acad Sci U S A 71:1016–1020. https://doi.org/10.1073/pnas.71.4.1016

  17. ** Z, Dobson SL (2005) Characterization of Wolbachia transfection efficiency by using microinjection of embryonic cytoplasm and embryo homogenate. Appl Environ Microbiol 71:3199–3204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. McMeniman CJ, Lane AM, Fong AW et al (2008) Host adaptation of a Wolbachia strain after long-term serial passage in mosquito cell lines. Appl Environ Microbiol 74:6963–6969. https://doi.org/10.1128/AEM.01038-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Morris AC (1997) In: Crampton JM, Beard CB, Louis C (eds) Microinjection of mosquito embryos. In molecular biology of insect disease vectors: a methods manual. Chapman & Hall, pp 423–429

    Chapter  Google Scholar 

  20. Ross PA, Robinson KL, Yang Q et al (2022) A decade of stability for wMel Wolbachia in natural Aedes aegypti populations. PLoS Pathog 18:e1010256. https://doi.org/10.1371/journal.ppat.1010256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hughes GL, Rasgon JL (2014) Transinfection: a method to investigate Wolbachia-host interactions and control arthropod-borne disease. Insect Mol Biol 23:141–151. https://doi.org/10.1111/imb.12066

    Article  CAS  PubMed  Google Scholar 

  22. Hughes GL, Koga R, Xue P et al (2011) Wolbachia infections are virulent and inhibit the human malaria parasite Plasmodium falciparum in Anopheles gambiae. PLoS Pathog 7:e1002043

    Google Scholar 

  23. Hughes GL, Dodson BL, Johnson RM et al (2014) Native microbiome impedes vertical transmission of Wolbachia in Anopheles mosquitoes. Proc Natl Acad Sci U S A 111:12498–12503. https://doi.org/10.1073/pnas.1408888111

  24. Liang X, Liu J, Bian G et al (2020) Wolbachia inter-strain competition and inhibition of expression of cytoplasmic incompatibility in mosquito. Front Microbiol 11:1638. https://doi.org/10.3389/fmicb.2020.01638

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ant TH, Sinkins SP (2018) A Wolbachia triple-strain infection generates self-incompatibility in Aedes albopictus and transmission instability in Aedes aegypti. Parasit Vectors 11:295. https://doi.org/10.1186/s13071-018-2870-0

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong ** .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhang, M., **, Z. (2024). Wolbachia Transinfection Via Embryonic Microinjection. In: Fallon, A.M. (eds) Wolbachia. Methods in Molecular Biology, vol 2739. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3553-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3553-7_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3552-0

  • Online ISBN: 978-1-0716-3553-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation