Determination of the Mycovirome of a Necrotrophic Fungus

  • Protocol
  • First Online:
Viral Metagenomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2732))

Abstract

Next-generation sequencing (NGS) of total RNA has allowed the detection of novel viruses infecting different hosts, such as fungi, increasing our knowledge on virus horizontal transfer events among different hosts, virus diversity, and virus evolution. Here, we describe the detailed protocols for the isolation of the plant pathogenic fungus Botrytis cinerea, from grapevine plants showing symptoms of the mold gray disease, the culture and maintenance of the isolated B. cinerea strains, the extraction of total RNA from B. cinerea strains for NGS, the bioinformatics pipeline designed and followed to detect mycoviruses in the sequenced samples, and the validation of the in silico detected mycoviruses by different approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hollings M (1962) Viruses associated with a die-back disease of cultivated mushroom. Nature 196:962–965

    Article  Google Scholar 

  2. Rodríguez-García C, Medina V, Alonso A, Ayllón MA (2014) Mycoviruses of Botrytis cinerea isolates from different hosts. Ann Appl Biol 164:46–61

    Article  Google Scholar 

  3. Dawe AL, Nuss DL (2013) Hypovirus molecular biology. From Koch’s postulates to host self-recognition genes that restrict virus transmission. In: Advances in virus research, pp 109–147

    Google Scholar 

  4. Rigling D, Prospero S (2018) Cryphonectria parasitica, the causal agent of chestnut blight: invasion history, population biology and disease control. Mol Plant Pathol 19:7–20

    Article  CAS  PubMed  Google Scholar 

  5. García-Pedrajas MD, Cañizares MC, Sarmiento-Villamil JL et al (2019) Mycoviruses in biological control: from basic research to field implementation. Phytopathology 109:1828–1839

    Article  PubMed  Google Scholar 

  6. Kotta-Loizou I, Coutts RHA (2017) Studies on the virome of the entomopathogenic fungus Beauveria bassiana reveal novel dsRNA elements and mild hypervirulence. PLoS Pathog 13:e1006183

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kanhayuwa L, Kotta-Loizou I, Özkan S et al (2015) A novel mycovirus from aspergillus fumigatus contains four unique dsRNAs as its genome and is infectious as dsRNA. Proc Natl Acad Sci U S A 112:9100–9105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Olivé M, Campo S (2021) The dsRNA mycovirus ChNRV1 causes mild hypervirulence in the fungal phytopathogen Colletotrichum higginsianum. Arch Microbiol 203:241–249

    Article  PubMed  Google Scholar 

  9. Márquez LM, Redman RS, Rodriguez RJ, Roossinck MJ (2007) A virus in a fungus in a plant: three-way Symbiosis required for thermal tolerance. Science 315(80-):513–515

    Google Scholar 

  10. Zhang H, **e J, Fu Y et al (2020) A 2-kb mycovirus converts a pathogenic fungus into a beneficial endophyte for Brassica protection and yield enhancement. Mol Plant 13:1420–1433

    Article  CAS  PubMed  Google Scholar 

  11. Khan HA, Sato Y, Kondo H et al (2021) A second capsidless hadakavirus strain with 10 positive-sense single-stranded RNA genomic segments from Fusarium nygamai. Arch Virol 166:2711–2722

    Article  CAS  PubMed  Google Scholar 

  12. Córdoba L, Ruiz-Padilla A, Rodríguez-Romero J, Ayllón MA (2022) Construction and characterization of a Botrytis virus F infectious clone. J Fungi 8:459

    Article  Google Scholar 

  13. Wagemans J, Holtappels D, Vainio E et al (2022) Going viral: virus-based biological control agents for plant protection. Annu Rev Phytopathol 60:21–42

    Article  CAS  PubMed  Google Scholar 

  14. Donaire L, Rozas J, Ayllón MA (2016) Molecular characterization of Botrytis ourmia-like virus, a mycovirus close to the plant pathogenic genus Ourmiavirus. Virology 489:158–164

    Article  CAS  PubMed  Google Scholar 

  15. Donaire L, Pagán I, Ayllón MA (2016) Characterization of Botrytis cinerea negative-stranded RNA virus 1, a new mycovirus related to plant viruses, and a reconstruction of host pattern evolution in negative-sense ssRNA viruses. Virology 499:212–218

    Article  CAS  PubMed  Google Scholar 

  16. Forgia M, Chiapello M, Daghino S et al (2022) Three new clades of putative viral RNA-dependent RNA polymerases with rare or unique catalytic triads discovered in libraries of ORFans from powdery mildews and the yeast of oenological interest Starmerella bacillaris. Virus Evol 8(1):veac038

    Article  PubMed  PubMed Central  Google Scholar 

  17. Donaire L, Ayllón MA (2017) Deep sequencing of mycovirus-derived small RNAs from Botrytis species. Mol Plant Pathol 18:1127–1137

    Article  CAS  PubMed  Google Scholar 

  18. Illana A, Marconi M, Rodríguez-Romero J et al (2017) Molecular characterization of a novel ssRNA ourmia-like virus from the rice blast fungus Magnaporthe oryzae. Arch Virol 162:891–895

    Article  CAS  PubMed  Google Scholar 

  19. Ruiz-Padilla A, Rodríguez-Romero J, Gómez-Cid I et al (2021) Novel mycoviruses discovered in the mycovirome of a necrotrophic fungus. MBio 12:e03705–e03720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Crucitti D, Chiapello M, Oliva D et al (2021) Identification and molecular characterization of novel mycoviruses in saccharomyces and non-saccharomyces yeasts of oenological interest. Viruses 14:52

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chiapello M, Rodríguez-Romero J, Ayllón MA, Turina M (2020) Analysis of the virome associated to grapevine downy mildew lesions reveals new mycovirus lineages. Virus Evol 6(2):veaa058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sutela S, Forgia M, Vainio EJ et al (2020) The virome from a collection of endomycorrhizal fungi reveals new viral taxa with unprecedented genome organization. Virus Evol 6(2):veaa076

    Article  PubMed  PubMed Central  Google Scholar 

  23. Botella L, Jung T (2021) Multiple viral infections detected in Phytophthora condilina by Total and small RNA sequencing. Viruses 13:620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Galán-Cubero R, Córdoba L, Rodríguez-Romero J et al (2022) Molecular data of a Novel Penoulivirus associated with the plant-pathogenic fungus Erysiphe necator. Phytopathology 112:1587–1591

    Article  PubMed  Google Scholar 

  25. Khalifa ME, MacDiarmid RM (2021) A mechanically transmitted DNA mycovirus is targeted by the defence machinery of its host, Botrytis cinerea. Viruses 13:1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hao F, Wu M, Li G (2021) Characterization of a novel genomovirus in the phytopathogenic fungus Botrytis cinerea. Virology 553:111–116

    Article  CAS  PubMed  Google Scholar 

  27. Yu X, Li B, Fu Y et al (2010) A geminivirus-related DNA mycovirus that confers hypovirulence to a plant pathogenic fungus. Proc Natl Acad Sci 107:8387–8392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li P, Wang S, Zhang L et al (2020) A tripartite ssDNA mycovirus from a plant pathogenic fungus is infectious as cloned DNA and purified virions. Sci Adv 6:eaay9634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dean R, Jal VK, Pretor ZA et al (2012) The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430

    Article  PubMed  PubMed Central  Google Scholar 

  30. Fernández-Ortuño D, Grabke A, Li X, Schnabel G (2015) Independent emergence of resistance to seven chemical classes of fungicides in Botrytis cinerea. Phytopathology 105:424–432

    Article  PubMed  Google Scholar 

  31. Fernández-Ortuño D, Pérez-García A, Chamorro M et al (2017) Resistance to the SDHI fungicides boscalid, fluopyram, fluxapyroxad, and penthiopyrad in Botrytis cinerea from commercial strawberry fields in Spain. Plant Dis 101:1306–1313

    Article  PubMed  Google Scholar 

  32. Diguta CF, Rousseaux S, Weidmann S et al (2010) Development of a qPCR assay for specific quantification of Botrytis cinerea on grapes. FEMS Microbiol Lett 313:81–87

    Article  CAS  PubMed  Google Scholar 

  33. Haas BJ, Papanicolaou A, Yassour M et al (2013) De novo transcript sequence reconstruction from RNA-seq using the trinity platform for reference generation and analysis. Nat Protoc 8:1494–1512

    Article  CAS  PubMed  Google Scholar 

  34. Bushnell B, Rood J, Singer E (2017) BBMerge – accurate paired shotgun read merging via overlap. PLoS One 12:e0185056

    Article  PubMed  PubMed Central  Google Scholar 

  35. Buchfink B, Reuter K, Drost H-G (2021) Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat Methods 18:366–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Danecek P, Bonfield JK, Liddle J et al (2021) Twelve years of SAMtools and BCFtools. Gigascience 10(2):giab008

    Article  PubMed  PubMed Central  Google Scholar 

  37. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  40. Untergasser A, Cutcutache I, Koressaar T et al (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40:e115–e115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was financially supported by VIROPLANT, a project that received funding from the European Union’s Horizon 2020 Research and Innovation Program (grant agreement number 773567). M. A. Ayllón and J.L.R-R research is currently funded by the Project I+D+i PID2020-120106RB-I00 supported by MCIN/AEI/10.13039/501100011033/

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María A. Ayllón .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ruiz-Padilla, A., Rodríguez-Romero, J.L., Pacifico, D., Chiapello, M., Ayllón, M.A. (2024). Determination of the Mycovirome of a Necrotrophic Fungus. In: Pantaleo, V., Miozzi, L. (eds) Viral Metagenomics. Methods in Molecular Biology, vol 2732. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3515-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3515-5_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3514-8

  • Online ISBN: 978-1-0716-3515-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation