Distribution of Small RNAs Along Transposable Elements in Vitis vinifera During Somatic Embryogenesis

  • Protocol
  • First Online:
Viral Metagenomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2732))

Abstract

Metaviridae is a family of reverse-transcribing viruses, closely related to retroviruses; they exist within their host’s DNA as transposable elements. Transposable element study requires the use of specialized tools, in part because of their repetitive nature. By combining data from transcript RNA-Seq, small RNA-Seq, and parallel analysis of RNA ends-Seq from grapevine somatic embryos, we set up a bioinformatics flowchart that could be able to assemble and identify transposable elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Llorens C, Soriano B, Krupovic M, Ictv Report Consortium (2020) ICTV virus taxonomy profile: Metaviridae. J Gen Virol 101(11):1131–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bourque G, Burns KH, Gehring M et al (2018) Ten things you should know about transposable elements. Genome Biol 19:199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Leonetti P, Consiglio A, Arendt D et al (2023) Exogenous and endogenous dsRNAs perceived by plant Dicer-like 4 protein in the RNAi-depleted cellular context. Cell Mol Biol Lett 28:64

    Google Scholar 

  4. Dal Santo S, De Paoli E, Pagliarani C et al (2022) Stress responses and epigenomic instability mark the loss of somatic embryogenesis competence in grapevine. Plant Physiol 188(1):490–508

    Article  PubMed  Google Scholar 

  5. Rotunno S, Cocozza C, Pantaleo V et al (2022) Identification of known and novel Arundo donax L. microRNAs and their targets using high-throughput sequencing and degradome analysis. Life 12(5):651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Miozzi L, Gambino G, Burgyan J, Pantaleo V (2013) Genome-wide identification of viral and host transcripts targeted by viral siRNAs in Vitis vinifera. Mol Plant Pathol 14(1):30–43

    Article  CAS  PubMed  Google Scholar 

  7. Pantaleo V, Szittya G, Moxon S et al (2010) Identification of grapevine microRNAs and their targets using high-throughput sequencing and degradome analysis. Plant J 62(6):960–976

    CAS  PubMed  Google Scholar 

  8. German MA, Pillay M, Jeong DH et al (2008) Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat Biotechnol 26:941–946

    Article  CAS  PubMed  Google Scholar 

  9. Chiumenti M, Catacchio CR, Miozzi L et al (2018) A short indel-lacking-resistance gene triggers silencing of the photosynthetic machinery components through TYLCSV-associated endogenous siRNAs in tomato. Front Plant Sci 11(9):1470

    Google Scholar 

  10. Canaguier A, Grimplet J, Di Gaspero G et al (2017) A new version of the grapevine reference genome assembly (12X.v2) and of its annotation (VCost.v3). Genom Data 14:56–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen S, Zhou Y, Chen Y, Gu J (2018) Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34(17):i884–i890

    Article  PubMed  PubMed Central  Google Scholar 

  12. Langmead B, Wilks C, Antonescu V, Charles R (2018) Scaling read aligners to hundreds of threads on general-purpose processors. Bioinformatics 35(3):421–432

    Article  PubMed Central  Google Scholar 

  13. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with bowtie 2. Nat Methods 9(4):357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map (SAM) format and SAMtools. Bioinformatics 25(16):2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  15. Thody J, Folkes L, Medina-Calzada Z et al (2018) PAREsnip2: a tool for high-throughput prediction of small RNA targets from degradome sequencing data using configurable targeting rules. Nucleic Acids Res 46(17):8730–8739

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Mohorianu I, Stocks MB, Applegate CS et al (2017) The UEA small RNA workbench: a suite of computational tools for small RNA analysis. In: Methods in molecular biology (Clifton, N.J.), vol 1580, pp 193–224

    Google Scholar 

  17. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140

    Article  CAS  PubMed  Google Scholar 

  18. McCarthy DJ, Chen Y, Smyth GK (2012) Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res 40(10):4288–4297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen Y, Lun AAT, Smyth GK (2016) From reads to genes to pathways: differential expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline. F1000Research 5:1438

    PubMed  PubMed Central  Google Scholar 

  20. Oliveros JC. 2007–2015. Venny. An interactive tool for comparing lists with Venn’s diagrams

    Google Scholar 

  21. Dobin A, Davis CA, Schlesinger F et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21

    Article  CAS  PubMed  Google Scholar 

  22. Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general-purpose program for assigning sequence reads to genomic features. Bioinformatics 30(7):923–930

    Article  CAS  PubMed  Google Scholar 

  23. Watson M, Schnettler E, Kohl A (2013) viRome: an R package for the visualization and analysis of viral small RNA sequence datasets. Bioinformatics 29(15):1902–1903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26(6):841–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitantonio Pantaleo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rotunno, S., Leonetti, P., Szittya, G., Pantaleo, V. (2024). Distribution of Small RNAs Along Transposable Elements in Vitis vinifera During Somatic Embryogenesis. In: Pantaleo, V., Miozzi, L. (eds) Viral Metagenomics. Methods in Molecular Biology, vol 2732. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3515-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3515-5_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3514-8

  • Online ISBN: 978-1-0716-3515-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation