Determination of De Novo Suberin-Lignin Ferulate Deposition in Xylem Tissue Upon Vascular Pathogen Attack

  • Protocol
  • First Online:
Xylem

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2722))

  • 542 Accesses

Abstract

Plant vascular pathogens use different ways to reach the xylem vessels and cause devastating diseases in plants. Resistant and tolerant plants have evolved various defense mechanisms against vascular pathogens. Inducible physico-chemical structures, such as the formation of tyloses and wall reinforcements with phenolic polymers, are very effective barriers that confine the pathogen and prevent colonization. Here, we use a combination of classical histochemistry along with bright-field and fluorescence microscopy and two-dimensional nuclear magnetic resonance (2D-NMR) spectroscopy to visualize and characterize wall reinforcements containing phenolic wall polymers, namely, lignin, ferulates, and suberin, which occur in different xylem vasculature in response to pathogen attack.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yadeta KA, Thomma BPHJ (2013) The xylem as battleground for plant hosts and vascular wilt pathogens. Front Plant Sci 4:97

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bae C, Han SW, Song YR et al (2015) Infection processes of xylem-colonizing pathogenic bacteria: possible explanations for the scarcity of qualitative disease resistance genes against them in crops. Theor Appl Genet 128:1219–1229

    Article  CAS  PubMed  Google Scholar 

  3. Kashyap A, Planas-Marquès M, Valls M (2021) Blocking intruders: inducible physico-chemical barriers against plant vascular wilt pathogens. J Exp Bot 72:184–198

    Article  CAS  PubMed  Google Scholar 

  4. Beckman CH, Roberts EM (1995) On the nature and genetic basis for resistance and tolerance to fungal wilt diseases of plants. Adv Bot Res 21:35–77

    Article  Google Scholar 

  5. Ferreira V, Pianzzola MJ, Vilaró FL et al (2017) Interspecific potato breeding lines display differential colonization patterns and induced defense responses after Ralstonia solanacearum infection. Front Plant Sci 8:1–14

    Article  Google Scholar 

  6. Kashyap A, Jimenez-Jimenez AL, Zhang W et al (2022) Induced ligno-suberin vascular coating and tyramine-derived hydroxycinnamic acid amides restrict Ralstonia solanacearum colonization in resistant tomato. New Phytol 234:1411–1429

    Article  CAS  PubMed  Google Scholar 

  7. Robb J, Lee S-W, Mohan R et al (2008) Chemical characterization of stress-induced vascular coating in tomato. Plant Physiol 97:528–536

    Article  Google Scholar 

  8. Zaini PA, Nascimento R, Gouran H et al (2018) Molecular profiling of pierce’s disease outlines the response circuitry of Vitis vinifera to Xylella fastidiosa infection. Front Plant Sci 9:771

    Article  PubMed  PubMed Central  Google Scholar 

  9. Planas-Marquès M, Kressin JP, Kashyap A et al (2019) Four bottlenecks restrict colonization and invasion by the pathogen Ralstonia solanacearum in resistant tomato. J Exp Bot 71:2157–2171

    Article  PubMed Central  Google Scholar 

  10. Negrel J, Pollet B, Lapierre C (1996) Ether-linked ferulic acid amides in natural and wound periderms of potato tuber. Phytochemistry 43:1195–1199

    Article  CAS  Google Scholar 

  11. Graça J (2010) Hydroxycinnamates in suberin formation. Phytochem Rev 9:85–91

    Article  Google Scholar 

  12. Graça J (2015) Suberin: the biopolyester at the frontier of plants. Front Chem 3:1–11

    Article  Google Scholar 

  13. Boher P, Serra O, Soler M et al (2013) The potato suberin feruloyl transferase FHT which accumulates in the phellogen is induced by wounding and regulated by abscisic and salicylic acids. J Exp Bot 64:3225–3236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ralph J, Landucci L (2010) NMR of lignins. In: Heitner JA, Dimmel C, Scmidt DR (eds) Lignin and lignans: Adv chem. CRC Press, Taylor & Francis, Boca Raton, pp 137–243

    Chapter  Google Scholar 

  15. Correia VG, Bento A, Pais J et al (2020) The molecular structure and multifunctionality of the cryptic plant polymer suberin. Materials Today Bio 5:100039

    Article  CAS  PubMed  Google Scholar 

  16. Campos L, Lisón P, López-Gresa MP et al (2014) Transgenic tomato plants overexpressing tyramine N-hydroxycinnamoyltransferase exhibit elevated hydroxycinnamic acid amide levels and enhanced resistance to Pseudomonas syringae. Mol Plant-Microbe Interact 27:1159–1169

    Article  PubMed  Google Scholar 

  17. Pomar F, Novo M, Bernal MA et al (2004) Changes in stem lignins (monomer composition and crosslinking) and peroxidase are related with the maintenance of leaf photosynthetic integrity during Verticillium wilt in Capsicum annuum. New Phytol 163:111–123

    Article  CAS  PubMed  Google Scholar 

  18. Harris PJ, Trethewey JAK (2010) The distribution of ester-linked ferulic acid in the cell walls of angiosperms. Phytochem Rev 9:19–33

    Article  CAS  Google Scholar 

  19. Chang H, Cowling EB, Brown W et al (1975) Comparative studies on cellulolytic enzyme lignin and milled wood lignin of sweetgum and spruce. Holzforschung 29:153–159

    Article  CAS  Google Scholar 

  20. Rencoret J, Kim H, Evaristo AB et al (2018) Variability in lignin composition and structure in cell walls of different parts of macaúba (Acrocomia aculeata) palm fruit. J Agric Food Chem 66:138–153

    Article  CAS  PubMed  Google Scholar 

  21. del Río JC, Rencoret J, Gutiérrez A et al (2018) Structural characterization of lignin from maize (Zea mays L.) fibers: evidence for diferuloylputrescine incorporated into the lignin polymer in maize kernels. J Agric Food Chem 66:4402–4413

    Article  PubMed  Google Scholar 

  22. Mahmoud AB, Danton O, Kaiser M et al (2020) Lignans, amides, and saponins from Haplophyllum tuberculatum and their antiprotozoal activity. Molecules 25:2825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Youngsung J, Kim H, Kang M et al (2021) Pith-specific lignification in Nicotiana atenuata as a defense against a stem-boring herbivore. New Phytol 232:332–344

    Article  Google Scholar 

  24. Nomberg G, Marinov O, Arya GC et al (2022) The key enzymes in the suberin biosynthetic pathway in plants: an update. Plan Theory 11:392

    CAS  Google Scholar 

Download references

Acknowledgments

Research was funded through MCIN/AEI/ 10.13039/501100011033 and “ERDF A way of making Europe” with grants PID2019-108595RB-I00 (NSC) and PID2020-118968RB-I00 (JR) and with the fellowship PRE2020-092086 (ALJ-J). WZ is a recipient of the China Scholarship Council fellowship (CSC NO.201906990041). Research at CRAG is also funded through the “Severo Ochoa Programme for Centres of Excellence in R&D” (CEX2019-000902-S by MCIN/AEI/10.13039/501100011033) and through the CERCA Programme/Generalitat de Catalunya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Núria S. Coll .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhang, W., Jiménez-Jiménez, Á., Capellades, M., Rencoret, J., Kashyap, A., Coll, N.S. (2024). Determination of De Novo Suberin-Lignin Ferulate Deposition in Xylem Tissue Upon Vascular Pathogen Attack. In: Agusti, J. (eds) Xylem. Methods in Molecular Biology, vol 2722. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3477-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3477-6_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3476-9

  • Online ISBN: 978-1-0716-3477-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation