Split-Protein Therapeutic Platforms: Identifying Binder Pairs

  • Protocol
  • First Online:
Therapeutic Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2720))

Abstract

Therapeutic proteins, including enzymes, interferons, interleukins, and growth factors, are emerging as important modalities to treat many diseases that elude management by small molecule drugs. One challenge of protein treatment is the propensity for off-target or systemic activity. A promising approach to overcome such toxicity is to create conditionally active constructs by splitting the therapeutic protein into two, or more, inactive fragments and by fusing these fragments to binders (e.g., antibodies) that target distinct epitopes on a cell surface. When these antibodies bind to their respective targets, the protein fragments are brought into proximity and then reconstitute into the active form of the therapeutic protein. In this chapter, we describe approaches to determine antibody pairs that enable the reconstitution of the active protein. General computational and empirical methods are provided to facilitate the identification of pairs starting only from protein sequence data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nervig CS, Hatch ST, Owen SC (2022) Complementation dependent enzyme prodrug therapy enables targeted activation of prodrug on HER2-positive cancer cells. ACS Med Chem Lett 13(11):1769–1775

    Article  CAS  PubMed  Google Scholar 

  2. Venetz D, Koovely D, Weder B, Neri D (2016) Targeted reconstitution of cytokine activity upon antigen binding using split cytokine antibody fusion proteins. J Biol Chem 291(35):18139–18147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Quijano-Rubio A, Bhuiyan AM, Yang H, Leung I, Bello E, Ali LR, Zhangxu K, Perkins J, Chun J-H, Wang W, Lajoie MJ, Ravichandran R, Kuo Y-H, Dougan SK, Riddell SR, Spangler JB, Dougan M, Silva D-A, Baker D (2022) A split, conditionally active mimetic of IL-2 reduces the toxicity of systemic cytokine therapy. Nat Biotechnol

    Google Scholar 

  4. Simeon R, Chen Z (2018) In vitro-engineered non-antibody protein therapeutics. Protein Cell 9(1):3–14

    Article  CAS  PubMed  Google Scholar 

  5. Jost C, Plückthun A (2014) Engineered proteins with desired specificity: DARPins, other alternative scaffolds and bispecific IgGs. Curr Opin Struct Biol 27:102–112

    Article  CAS  PubMed  Google Scholar 

  6. Weidle UH, Auer J, Brinkmann U, Georges GUY, Tiefenthaler G (2013) The emerging role of new protein scaffold-based agents for treatment of cancer. Cancer Genomics Proteomics 10(4):155

    CAS  PubMed  Google Scholar 

  7. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Zidek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596(7873):583–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mirdita M, Schutze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M (2022) ColabFold: making protein folding accessible to all. Nat Methods 19(6):679–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yin R, Feng BY, Varshney A, Pierce BG (2022) Benchmarking AlphaFold for protein complex modeling reveals accuracy determinants. Protein Sci 31(8):e4379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bender BJ, Cisneros A III, Duran AM, Finn JA, Fu D, Lokits AD, Mueller BK, Sangha AK, Sauer MF, Sevy AM, Sliwoski G, Sheehan JH, DiMaio F, Meiler J, Moretti R (2016) Protocols for molecular modeling with Rosetta3 and RosettaScripts. Biochemistry (Mosc) 55(34):4748–4763

    Article  CAS  Google Scholar 

  11. Schoeder CT, Schmitz S, Adolf-Bryfogle J, Sevy AM, Finn JA, Sauer MF, Bozhanova NG, Mueller BK, Sangha AK, Bonet J, Sheehan JH, Kuenze G, Marlow B, Smith ST, Woods H, Bender BJ, Martina CE, Del Alamo D, Kodali P, Gulsevin A, Schief WR, Correia BE, Crowe JE Jr, Meiler J, Moretti R (2021) Modeling immunity with Rosetta: methods for antibody and antigen design. Biochemistry (Mosc) 60(11):825–846

    Article  CAS  Google Scholar 

  12. Song Y, DiMaio F, Wang RY-R, Kim D, Miles C, Brunette T, Thompson J, Baker D (2013) High-resolution comparative modeling with RosettaCM. Structure 21(10):1735–1742

    Article  CAS  PubMed  Google Scholar 

  13. Raman S, Vernon R, Thompson J, Tyka M, Sadreyev R, Pei J, Kim D, Kellogg E, DiMaio F, Lange O (2009) Structure prediction for CASP8 with all-atom refinement using Rosetta. Proteins Structure Function Bioinformatics 77(S9):89–99

    Article  CAS  Google Scholar 

  14. Pierce BG, Wiehe K, Hwang H, Kim BH, Vreven T, Weng Z (2014) ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinformatics 30(12):1771–1773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, Morris JH, Ferrin TE (2021) UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci 30(1):70–82

    Article  CAS  PubMed  Google Scholar 

  16. Guest JD, Vreven T, Zhou J, Moal I, Jeliazkov JR, Gray JJ, Weng Z, Pierce BG (2021) An expanded benchmark for antibody-antigen docking and affinity prediction reveals insights into antibody recognition determinants. Structure 29(6):606–621.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Marze NA, Roy Burman SS, Sheffler W, Gray JJ (2018) Efficient flexible backbone protein–protein docking for challenging targets. Bioinformatics 34(20):3461–3469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. van Rosmalen M, Krom M, Merkx M (2017) Tuning the flexibility of glycine-serine linkers to allow rational design of multidomain proteins. Biochemistry (Mosc) 56(50):6565–6574

    Article  Google Scholar 

  19. Kim SJ, Dixon AS, Owen SC (2021) Split-enzyme immunoassay to monitor EGFR-HER2 heterodimerization on cell surfaces. Acta Biomater 135:225–233

    Article  CAS  PubMed  Google Scholar 

  20. Dixon AS, Kim SJ, Baumgartner BK, Krippner S, Owen SC (2017) A tri-part protein complementation system using antibody-small peptide fusions enables homogeneous immunoassays. Sci Rep 7(1):8186

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kincaid VA, Wang H, Sondgeroth CA, Torio EA, Ressler VT, Fitzgerald C, Hall MP, Hurst R, Wood MG, Gilden JK, Kirkland TA, Lazar D, Chia-Chang H, Encell LP, Machleidt T, Zhou W, Dart ML (2022) Simple, rapid chemical labeling and screening of antibodies with luminescent peptides. ACS Chem Biol 17(8):2179–2187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim SJ, Hatch ST, Dixon AS, Owen SC (2019) Split-enzyme fragment as a single affinity tag that enables protein expression, purification, and functional assays. Biotechnol Bioeng 116(7):1575–1583

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shawn C. Owen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nervig, C.S., Gustat, J.R., Owen, S.C. (2024). Split-Protein Therapeutic Platforms: Identifying Binder Pairs. In: Sullivan, M.O., Chackerian, B., Chen, W. (eds) Therapeutic Proteins. Methods in Molecular Biology, vol 2720. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3469-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3469-1_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3468-4

  • Online ISBN: 978-1-0716-3469-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation