Selective and Site-Specific Incorporation of Nonstandard Amino Acids Within Proteins for Therapeutic Applications

  • Protocol
  • First Online:
Therapeutic Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2720))

Abstract

The incorporation of nonstandard amino acids (nsAAs) within protein sequences has broadened the chemical functionalities available for use in the study, prevention, or treatment of disease. The ability to genetically encode the introduction of nsAAs at precise sites of target recombinant proteins has enabled numerous applications such as bioorthogonal conjugation, thrombin inhibition, intrinsic biological containment of live organisms, and immunochemical termination of self-tolerance. Genetic systems that perform critical steps in enabling nsAA incorporation are known as orthogonal translation systems or orthogonal aminoacyl-tRNA synthetase/tRNA pairs. In Escherichia coli, several of these have been designed to accept novel nsAAs. Certain endogenous proteins, codon context, and standard amino acid concentrations can affect the yield of recombinant protein, the rate of nsAA incorporation within off-target proteins, and the rate of misincorporation due to near-cognate suppression or misacylation of orthogonal tRNA with standard amino acids. As a result, a significant body of work has been performed in engineering the E. coli genome to alleviate these issues. Here, we describe common methods applicable to nsAA incorporation within proteins in E. coli for sufficient purity and characterization for downstream therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sletten EM, Bertozzi CR (2009) Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew Chem Int Ed 48:6974–6998

    Article  CAS  Google Scholar 

  2. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40:2004–2021

    Article  CAS  Google Scholar 

  3. Cho H, Daniel T, Buechler YJ et al (2011) Optimized clinical performance of growth hormone with an expanded genetic code. Proc Nat Acad Sci 108:9060–9065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hallam TJ, Wold E, Wahl A et al (2015) Antibody conjugates with unnatural amino acids. Mol Pharmaceutics 12(6):1848–1862

    Google Scholar 

  5. Kim CH, Axup JY, Dubrovska A et al (2012) Synthesis of bispecific antibodies using genetically encoded unnatural amino acids. J Am Chem Soc 134:9918–9921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Agarwal P, Bertozzi CR (2015) Site-specific antibody-drug conjugates: the nexus of bioorthogonal chemistry, protein engineering, and drug development. Bioconjugate Chem 26:176–192

    Article  CAS  Google Scholar 

  7. Tian F, Lu Y, Manibusan A et al (2014) A general approach to site-specific antibody drug conjugates. Proc Natl Acad Sci U S A 111:1766–1771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Roy G, Reier J, Garcia A et al (2020) Development of a high yielding expression platform for the introduction of non-natural amino acids in protein sequences. MAbs 12:1684749

    Article  PubMed  Google Scholar 

  9. BrickBio, https://www.brickbio.com/

  10. Groff D, Carlos NA, Chen R et al (2022) Development of an E coli strain for cell-free ADC manufacturing. Biotechnol Bioeng 119:162–175

    Article  CAS  PubMed  Google Scholar 

  11. Milla ME, Ptacin JL, Ma L et al (2019) THOR-707, a novel not-alpha IL-2, promotes all key immune system anti-tumoral actions of IL-2 without eliciting vascular leak syndrome (VLS). Ann Oncol 30:v501

    Article  Google Scholar 

  12. Liu CC, Schultz PG (2006) Recombinant expression of selectively sulfated proteins in Escherichia coli. Nat Biotechnol 24:1436–1440

    Article  CAS  PubMed  Google Scholar 

  13. Liu CC, Choe H, Farzan M, Smider VV, Schultz PG (2009) Mutagenesis and evolution of sulfated antibodies using an expanded genetic code. Biochemistry 48(37):8891–8898

    Google Scholar 

  14. Chen S, Maini R, Bai X et al (2017) Incorporation of phosphorylated tyrosine into proteins: in vitro translation and study of phosphorylated IκB-α and its interaction with NF-κB. J Am Chem Soc 139:14098–14108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Grünewald J, Tsao ML, Perera R et al (2008) Immunochemical termination of self-tolerance. Proc Natl Acad Sci U S A 105:11276–11280

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gauba V, Grunewald J, Gorney V et al (2011) Loss of CD4 T-cell-dependent tolerance to proteins with modified amino acids. Proc Nat Acad Sci 108:12821–12826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hemphill J, Borchardt EK, Brown K et al (2015) Optical control of CRISPR/Cas9 gene editing. J Am Chem Soc 137:5642–5645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jones CM, Robkis DM, Blizzard RJ et al (2021) Genetic encoding of a highly photostable, long lifetime fluorescent amino acid for imaging in mammalian cells. Proc Nat Acad Sci 12:11955–11964

    CAS  Google Scholar 

  19. Thyer R, Shroff R, Klein DR et al (2018) Custom selenoprotein production enabled by laboratory evolution of recoded bacterial strains. Nat Biotechnol 36:624–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yuan Z, Wang N, Kang G et al (2017) Controlling multicycle replication of live-attenuated HIV-1 using an unnatural genetic switch. ACS Synth Biol 6:721–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang N, Li Y, Niu W et al (2014) Construction of a live-attenuated HIV-1 vaccine through genetic code expansion. Angew Chem Int Ed Engl 53:4867–4871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mandell DJ, Lajoie MJ, Mee MT et al (2015) Biocontainment of genetically modified organisms by synthetic protein design. Nature 518:55–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kunjapur AM, Napolitano MG, Hysolli E et al (2021) Synthetic auxotrophy remains stable after continuous evolution and in coculture with mammalian cells. Science 7:eabf5851

    CAS  Google Scholar 

  24. Johnson JA, Lu YY, Van DJA et al (2010) Residue-specific incorporation of non-canonical amino acids into proteins: recent developments and applications. Curr Opin Chem Biol 14:774–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Singh-Blom A, Hughes RA, Ellington AD (2013) Residue-specific incorporation of unnatural amino acids into proteins in vitro and in vivo. In: Methods in molecular biology. Humana Press, Totowa, pp 93–114

    Google Scholar 

  26. Anderson JC, Wu N, Santoro SW et al (2004) An expanded genetic code with a functional quadruplet codon. Proc Natl Acad Sci USA 101:7566–7571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Magliery TJ, Anderson JC, Schultz PG (2001) Expanding the genetic code: selection of efficient suppressors of four-base codons and identification of “shifty” four-base codons with a library approach in Escherichia coli. J Mol Biol 307:755–769

    Article  CAS  PubMed  Google Scholar 

  28. DeBenedictis EA, Carver GD, Chung CZ et al (2021) Multiplex suppression of four quadruplet codons via tRNA directed evolution. Nat Commun 12:1–13

    Article  Google Scholar 

  29. Neumann H, Wang K, Davis L et al (2010) Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome. Nature 464:441–444

    Article  CAS  PubMed  Google Scholar 

  30. Schmied WH, Tnimov Z, Uttamapinant C et al (2018) Controlling orthogonal ribosome subunit interactions enables evolution of new function. Nature 564:444–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Malyshev DA, Dhami K, Lavergne T et al (2014) A semi-synthetic organism with an expanded genetic alphabet. Nature 509:385–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang Y, Ptacin JL, Fischer EC et al (2017) A semi-synthetic organism that stores and retrieves increased genetic information. Nature 551:644–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fischer EC, Hashimoto K, Zhang Y et al (2020) New codons for efficient production of unnatural proteins in a semisynthetic organism. Nat Chem Biol 16(5):570–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wan W, Tharp JM, Liu WR (2014) Pyrrolysyl-tRNA synthetase: an ordinary enzyme but an outstanding genetic code expansion tool. Biochim Biophys Acta BBA Proteins Proteom 1844(6):1059–1070

    Article  CAS  Google Scholar 

  35. Dumas A, Lercher L, Spicer CD et al (2015) Designing logical codon reassignment-expanding the chemistry in biology. Chem Sci 6:50–69

    Article  CAS  PubMed  Google Scholar 

  36. Italia JS, Addy PS, Wrobel CJJ et al (2017) An orthogonalized platform for genetic code expansion in both bacteria and eukaryotes. Nat Chem Biol 13:446–450

    Article  CAS  PubMed  Google Scholar 

  37. Zhao H, Ding W, Zang J et al (2021) Directed-evolution of translation system for efficient unnatural amino acids incorporation and generalizable synthetic auxotroph construction. Nat Commun 12:1–12

    Article  Google Scholar 

  38. Young TS, Ahmad I, Yin JA et al (2010) An enhanced system for unnatural amino acid mutagenesis in E. coli. J Mol Biol 395:361–374

    Article  CAS  PubMed  Google Scholar 

  39. Chatterjee A, Sun SB, Furman JL et al (2013) A versatile platform for single- and multiple-unnatural amino acid mutagenesis in Escherichia coli. Biochemistry 52:1828–1837

    Article  CAS  PubMed  Google Scholar 

  40. Lajoie MJ, Rovner AJ, Goodman DB et al (2013) Genomically recoded organisms expand biological functions. Science 342(1979):357–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang L, Schultz PG (2001) A general approach for the generation of orthogonal tRNAs. Chem Biol 8:883–890

    Article  CAS  PubMed  Google Scholar 

  42. Miller SM, Wang T, Liu DR (2020) Phage-assisted continuous and non-continuous evolution. Nat Protoc 15:4101–4127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kunjapur AM, Stork DA, Kuru E et al (2018) Engineering posttranslational proofreading to discriminate nonstandard amino acids. Proc Natl Acad Sci USA 115:619–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chin JW, Santoro SW, Martin AB et al (2002) Addition of p-azido-L-phenylalanine to the genetic code of Escherichia coli. J Am Chem Soc 124:9026–9027

    Article  CAS  PubMed  Google Scholar 

  45. Miyake-Stoner SJ, Refakis CA, Hammill JT et al (2010) Generating permissive site-specific unnatural aminoacyl-tRNA synthetases. Biochemistry 49:1667–1677

    Article  CAS  PubMed  Google Scholar 

  46. Young DD, Young TS, Jahnz M et al (2011) An evolved aminoacyl-tRNA synthetase with atypical polysubstrate specificity. Biochemistry 50:1894–1900

    Article  CAS  PubMed  Google Scholar 

  47. Hohl A, Karan R, Akal A et al (2019) Engineering a polyspecific pyrrolysyl-tRNA synthetase by a high-throughput FACS screen. Sci Rep 9:1–9

    Article  CAS  Google Scholar 

  48. Young DD, Jockush S, Turro NJ et al (2011) Synthetase polyspecificity as a tool to modulate protein function. Bioorg Med Chem Lett 21:7502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ng PC, Henikoff S (2003) SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 31:3812–3814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Choi Y, Chan AP (2015) PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 31:2745–2747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gallagher RR, Li Z, Lewis AO et al (2014) Rapid editing and evolution of bacterial genomes using libraries of synthetic DNA. Nat Protoc 9:2301–2316

    Article  CAS  PubMed  Google Scholar 

  52. Wannier TM, Nyerges A, Kuchwara HM et al (2020) Improved bacterial recombineering by parallelized protein discovery. Proc Natl Acad Sci USA 117:13689–13698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Farasat I, Kushwaha M, Collens J et al (2014) Efficient search, map**, and optimization of multi-protein genetic systems in diverse bacteria. Mol Syst Biol 10:731

    Article  PubMed  PubMed Central  Google Scholar 

  54. Chen RH, Huang C-J, Newton BS et al (2009) Factors affecting endotoxin removal from recombinant therapeutic proteins by anion exchange chromatography. Protein Expr Purif 64:76–81

    Article  CAS  PubMed  Google Scholar 

  55. Wang L, Brock A, Herberich B et al (2001) Expanding the genetic code of Escherichia coli. Science 292(1979):498–500

    Article  CAS  PubMed  Google Scholar 

  56. Lee BS, Kim S, Ko BJ et al (2017) An efficient system for incorporation of unnatural amino acids in response to the four-base codon AGGA in Escherichia coli. Biochim Biophys Acta BBA Gen Subj 1861:3016–3023

    Article  CAS  Google Scholar 

  57. Venkat S, Sturges J, Stahman A et al (2018) Genetically incorporating two distinct post-translational modifications into one protein simultaneously. ACS Synth Biol 7:689–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wan W, Huang Y, Wang Z et al (2010) A facile system for genetic incorporation of two different noncanonical amino acids into one protein in Escherichia coli. Angew Chem Int Ed 49:3211–3214

    Article  CAS  Google Scholar 

  59. Blight SK, Larue RC, Mahapatra A et al (2004) Direct charging of tRNACUA with pyrrolysine in vitro and in vivo. Nature 431:333–335

    Article  CAS  PubMed  Google Scholar 

  60. Mukai T, Yamaguchi A, Ohtake K et al (2015) Reassignment of a rare sense codon to a non-canonical amino acid in Escherichia coli. Nucleic Acids Res 43:8111–8122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ding W, Zhao H, Chen Y et al (2020) Chimeric design of pyrrolysyl-tRNA synthetase/tRNA pairs and canonical synthetase/tRNA pairs for genetic code expansion. Nat Commun 11:1–13

    Article  Google Scholar 

  62. Kuznetsov G, Goodman DB, Filsinger GT et al (2017) Optimizing complex phenotypes through model-guided multiplex genome engineering. Genome Biol 18:1–12

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation (NSF CBET #2032243).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aditya M. Kunjapur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Butler, N.D., Kunjapur, A.M. (2024). Selective and Site-Specific Incorporation of Nonstandard Amino Acids Within Proteins for Therapeutic Applications. In: Sullivan, M.O., Chackerian, B., Chen, W. (eds) Therapeutic Proteins. Methods in Molecular Biology, vol 2720. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3469-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3469-1_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3468-4

  • Online ISBN: 978-1-0716-3469-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation