Edge, Fog, and Cloud Against Disease: The Potential of High-Performance Cloud Computing for Pharma Drug Discovery

  • Protocol
  • First Online:
High Performance Computing for Drug Discovery and Biomedicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2716))

  • 1096 Accesses

Abstract

The high-performance computing (HPC) platform for large-scale drug discovery simulation demands significant investment in speciality hardware, maintenance, resource management, and running costs. The rapid growth in computing hardware has made it possible to provide cost-effective, robust, secure, and scalable alternatives to the on-premise (on-prem) HPC via Cloud, Fog, and Edge computing. It has enabled recent state-of-the-art machine learning (ML) and artificial intelligence (AI)-based tools for drug discovery, such as BERT, BARD, AlphaFold2, and GPT. This chapter attempts to overview types of software architectures for develo** scientific software or application with deployment agnostic (on-prem to cloud and hybrid) use cases. Furthermore, the chapter aims to outline how the innovation is disrupting the orthodox mindset of monolithic software running on on-prem HPC and provide the paradigm shift landscape to microservices driven application programming (API) and message parsing interface (MPI)-based scientific computing across the distributed, high-available infrastructure. This is coupled with agile DevOps, and good coding practices, low code and no-code application development frameworks for cost-efficient, secure, automated, and robust scientific application life cycle management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saharan VA, Banerjee S, Penuli S, Dobhal S (2022) History and present scenario of computers in pharmaceutical research and development. Comput Aided Pharm Drug Deliv 1–38. https://doi.org/10.1007/978-981-16-5180-9_1

  2. Schaller RR (1997) Moore’s law: past, present, and future. IEEE Spectr 34(52–55):57. https://doi.org/10.1109/6.591665

    Article  Google Scholar 

  3. Grannan A, Sood K, Norris B, Dubey A (2020) Understanding the landscape of scientific software used on high-performance computing platforms. Int J High Perform Comput Appl 34:465–477. https://doi.org/10.1177/1094342019899451/

    Article  Google Scholar 

  4. Jamkhande PG, Ghante MH, Ajgunde BR (2017) Software based approaches for drug designing and development: a systematic review on commonly used software and its applications. Bull Fac Pharm Cairo Univ 55:203–210. https://doi.org/10.1016/J.BFOPCU.2017.10.001

    Article  Google Scholar 

  5. Badwan BA, Liaropoulos G, Kyrodimos E et al (2023) Machine learning approaches to predict drug efficacy and toxicity in oncology. Cell Rep Methods 3:100143. https://doi.org/10.1016/J.CRMETH.2023.100413

    Article  Google Scholar 

  6. Pauli W (2019) Breaking the wall between data scientists and app developers with Azure DevOps | Azure Blog and Updates | Microsoft Azure. https://azure.microsoft.com/en-gb/blog/breaking-the-wall-between-data-scientists-and-app-developers-with-azure-devops/. Accessed 28 Apr 2023

  7. Peters T (2022) PEP 20 – the Zen of python. https://peps.python.org/pep-0020/. Accessed 3 May 2023

  8. Salzman PJ, Burian M, Pomerantz O et al (2023) The Linux kernel module programming guide. https://sysprog21.github.io/lkmpg/. Accessed 28 Apr 2023

  9. Gamblin T, Legendre M, Collette MR et al (2015) The Spack package manager: bringing order to HPC software chaos. In: International conference for high performance computing, networking, storage and analysis, SC, 15–20, November 2015. https://doi.org/10.1145/2807591.2807623

    Chapter  Google Scholar 

  10. Saha P, Uminski P, Beltre A, Govindaraju M (2018) Evaluation of Docker containers for scientific workloads in the cloud. ACM Int Conf Proc Ser. https://doi.org/10.1145/3219104.3229280

  11. List M (2017) Using Docker compose for the simple deployment of an integrated drug target screening platform. J Integr Bioinform 14:20170016. https://doi.org/10.1515/JIB-2017-0016

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kononowicz T, Czarnul P (2022) Performance assessment of using Docker for selected MPI applications in a parallel environment based on commodity hardware. Appl Sci 12:8305. https://doi.org/10.3390/APP12168305

    Article  CAS  Google Scholar 

  13. Novella JA, Khoonsari PE, Herman S et al (2019) Container-based bioinformatics with pachyderm. Bioinformatics 35:839–846. https://doi.org/10.1093/BIOINFORMATICS/BTY699

    Article  CAS  PubMed  Google Scholar 

  14. Stephey L, Younge A, Fulton D et al (2023) HPC containers at scale using Podman. https://opensource.com/article/23/1/hpc-containers-scale-using-podman. Accessed 2 May 2023

  15. Gantikow H, Walter S, Reich C (2020) Rootless containers with Podman for HPC, Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics) LNCS 12321, pp 343–354. https://doi.org/10.1007/978-3-030-59851-8_23/COVER

    Book  Google Scholar 

  16. Kurtzer GM, Sochat V, Bauer MW (2017) Singularity: scientific containers for mobility of compute. PLoS One 12:e0177459. https://doi.org/10.1371/JOURNAL.PONE.0177459

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gupta A (2020) Reverie labs: scaling drug development with containerized machine learning | AWS Startups Blog. https://aws.amazon.com/blogs/startups/reverie-labs-scaling-drug-development-with-containerized-machine-learning/. Accessed 28 Apr 2023

  18. Tarasov V, Rupprecht L, Skourtis D et al (2019) Evaluating Docker storage performance: from workloads to graph drivers. Clust Comput 22:1159–1172. https://doi.org/10.1007/S10586-018-02893-Y/METRICS

    Article  Google Scholar 

  19. Farshteindiker A, Puzis R (2021) Leadership hijacking in Docker swarm and its consequences. Entropy 23. https://doi.org/10.3390/E23070914

  20. Saboor A, Hassan MF, Akbar R et al (2022) Containerized microservices orchestration and provisioning in cloud computing: a conceptual framework and future perspectives. Appl Sci 12:5793. https://doi.org/10.3390/APP12125793

    Article  CAS  Google Scholar 

  21. Jha DN, Garg S, Jayaraman PP et al (2021) A study on the evaluation of HPC microservices in containerized environment. Concurr Comput 33:1–1. https://doi.org/10.1002/CPE.5323

    Article  Google Scholar 

  22. Nadeem A, Malik MZ (2022) Case for microservices orchestration using workflow engines. In: IEEE/ACM 44th international conference on software engineering: new ideas and emerging results (ICSE-NIER), pp 6–10. https://doi.org/10.1109/ICSE-NIER55298.2022.9793520

    Chapter  Google Scholar 

  23. Poniszewska-Marańda A, Czechowska E (2021) Kubernetes cluster for automating software production environment. Sensors 21:1910. https://doi.org/10.3390/S21051910

    Article  PubMed  PubMed Central  Google Scholar 

  24. HPE superdome flex server architecture and RAS technical white paper. https://www.hpe.com/psnow/doc/A00036491ENW.pdf. Accessed 2 May 2023

  25. Yeung T (2022) What’s the difference: edge computing vs cloud computing. https://blogs.nvidia.com/blog/2022/01/05/difference-between-cloud-and-edge-computing/. Accessed 28 Apr 2023

  26. Golightly L, Chang V, Xu QA et al (2022) Adoption of cloud computing as innovation in the organization. Int J Eng Bus Manag 14. https://doi.org/10.1177/18479790221093992

  27. Puntel E (2020) COVID-19 how AI partnership is hel** UCB search for new therapies. In: UCB Science News. https://www.ucb.com/our-science/magazine/detail/article/COVID-19-How-AI-partnership-is-hel**-our-search-for-new-therapies. Accessed 28 Apr 2023

  28. Kraemer FA, Braten AE, Tamkittikhun N, Palma D (2017) Fog computing in healthcare – a review and discussion. IEEE Access 5:9206–9222. https://doi.org/10.1109/ACCESS.2017.2704100

    Article  Google Scholar 

  29. Earney S (2022) Edge computing vs fog computing: a comprehensive guide. https://xailient.com/blog/edge-computing-vs-fog-computing-a-comprehensive-guide/. Accessed 28 Apr 2023

  30. Bukhari A, Hussain FK, Hussain OK (2022) Fog node discovery and selection: a systematic literature review. Futur Gener Comput Syst 135:114–128. https://doi.org/10.1016/J.FUTURE.2022.04.034

    Article  Google Scholar 

  31. Jamshidi M (Behdad), Moztarzadeh O, Jamshidi A et al (2023) Future of drug discovery: the synergy of edge computing, internet of medical things, and deep learning. Future Internet 15:142. https://doi.org/10.3390/FI15040142

    Article  Google Scholar 

  32. Daraghmi YA, Daraghmi EY, Daraghma R et al (2022) Edge–fog–cloud computing hierarchy for improving performance and security of NB-IoT-based health monitoring systems. Sensors 22. https://doi.org/10.3390/S22228646

  33. Kunal S, Saha A, Amin R (2019) An overview of cloud-fog computing: architectures, applications with security challenges. Secur Priv 2:e72. https://doi.org/10.1002/SPY2.72

    Article  Google Scholar 

  34. Younge AJ, Pedretti K, Grant RE, Brightwell R (2017) A tale of two systems: using containers to deploy HPC applications on supercomputers and clouds. In: Proceedings of the international conference on cloud computing technology and science, CloudCom 2017-December, pp 74–81. https://doi.org/10.1109/CLOUDCOM.2017.40

    Chapter  Google Scholar 

  35. Spjuth O, Frid J, Hellander A (2021) The machine learning life cycle and the cloud: implications for drug discovery. Expert Opin Drug Discovery 16:1071–1079. https://doi.org/10.1080/17460441.2021.1932812

    Article  Google Scholar 

  36. Puertas-Martín S, Banegas-Luna AJ, Paredes-Ramos M et al (2020) Is high performance computing a requirement for novel drug discovery and how will this impact academic efforts? Expert Opin Drug Discovery 15:981–986. https://doi.org/10.1080/17460441.2020.1758664

    Article  Google Scholar 

  37. Guerrero GD, Pérez-Sánchez HE, Cecilia JM, García JM (2012) Parallelization of virtual screening in drug discovery on massively parallel architectures. In: Proceedings – 20th Euromicro international conference on parallel, distributed and network-based processing, PDP 2012, pp 588–595. https://doi.org/10.1109/PDP.2012.26

    Chapter  Google Scholar 

  38. Gorgulla C, Boeszoermenyi A, Wang ZF et al (2020) An open-source drug discovery platform enables ultra-large virtual screens. Nature 580:663. https://doi.org/10.1038/S41586-020-2117-Z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gentile F, Yaacoub JC, Gleave J et al (2022) Artificial intelligence–enabled virtual screening of ultra-large chemical libraries with deep docking. Nat Protoc 17:672–697. https://doi.org/10.1038/s41596-021-00659-2

    Article  CAS  PubMed  Google Scholar 

  40. Pun FW, Liu BHM, Long X et al (2022) Identification of therapeutic targets for amyotrophic lateral sclerosis using PandaOmics – an AI-enabled biological target discovery platform. Front Aging Neurosci 14:638. https://doi.org/10.3389/FNAGI.2022.914017

    Article  Google Scholar 

  41. Boogaard P (2011) The potential of cloud computing for drug discovery & development. In: Drug discovery world. https://www.ddw-online.com/the-potential-of-cloud-computing-for-drug-discovery-development-1070-201110/. Accessed 28 Apr 2023

  42. Faragardi HR (2017) Ethical considerations in cloud computing systems. PRO 1:166. https://doi.org/10.3390/IS4SI-2017-04016

    Article  Google Scholar 

  43. Schaduangrat N, Lampa S, Simeon S et al (2020) Towards reproducible computational drug discovery. J Cheminform 12:1–30. https://doi.org/10.1186/S13321-020-0408-X

    Article  Google Scholar 

  44. Hupy C (2022) DevOps and the scientific process: a perfect pairing | GitLab. https://about.gitlab.com/blog/2022/02/15/devops-and-the-scientific-process-a-perfect-pairing/. Accessed 28 Apr 2023

  45. Leroy D, Sallou J, Bourcier J, Combemale B (2021) When scientific software meets software engineering. Computer (Long Beach Calif) 54:60–71. https://doi.org/10.1109/MC.2021.3102299

    Article  Google Scholar 

  46. Arvanitou EM, Ampatzoglou A, Chatzigeorgiou A, Carver JC (2021) Software engineering practices for scientific software development: a systematic map** study. J Syst Softw 172:110848. https://doi.org/10.1016/J.JSS.2020.110848

    Article  Google Scholar 

  47. Kumar S, Chander S (2020) Cost optimization techniques in cloud computing: review, suggestions and future scope. In: Proceedings of the international conference on innovative computing & communications. https://doi.org/10.2139/SSRN.3562980

    Chapter  Google Scholar 

  48. Seven imperatives to build a “security-first” mindset. https://www.linkedin.com/pulse/seven-imperatives-build-security-first-mindset-kumar-mssrrm/?trk=articles_directory. Accessed 3 May 2023

Download references

Acknowledgments

I am grateful to my PhD student, Pratik Patil, for discussion on cloud deployment architecture, good coding practice, and API development, Vedant Bonde for assistance with proofreading and improving the readability of the manuscript significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhushan Bonde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bonde, B. (2024). Edge, Fog, and Cloud Against Disease: The Potential of High-Performance Cloud Computing for Pharma Drug Discovery. In: Heifetz, A. (eds) High Performance Computing for Drug Discovery and Biomedicine. Methods in Molecular Biology, vol 2716. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3449-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3449-3_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3448-6

  • Online ISBN: 978-1-0716-3449-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation