Part of the book series: Methods in Molecular Biology ((MIMB,volume 2716))

Abstract

Computational methods in modern drug discovery have become ubiquitous, with methods that cover most of the discovery stages: from hit finding and lead identification to lead optimization. The overall aim of these computational methods is to obtain a more efficient discovery process, by reducing the number of “wet” experiments required to produce therapeutics that have higher probability of succeeding in clinical development and subsequently benefitting end patients by develo** highly effective therapeutics having minimal side effects. Virtual Screening is usually applied at the early stage of drug discovery, looking to find chemical matter having desired properties, such as molecular shape, electrostatics, and pharmacophores at desired three-dimensional positions. The aim of this stage is to search in a wide chemical space, including chemistry available from commercial suppliers and virtual databases of predicted reaction products, to identify molecules that would exert a particular biochemical response. This initial stage of the discovery process is very important since the subsequent stages will use the initial chemical motifs that have been found at the hit finding stage, and therefore the most suitable the compound is found, the more likely it is that subsequent stages will be successful and less time and resource consuming. This chapter provides a summary of various Virtual Screening methods, including shape match and molecular docking, and these methods are used in a Virtual Screening workflow that is provided as an example which is described to be run automatically in cloud resources. This automatic in-depth exploration of the chemical space using validated Virtual Screening methods can lead to a more streamlined and efficient discovery process, aiming to deliver chemical matter of high quality and maximizing the required biological effects while minimizing adverse effects. Surely, Virtual Screening pipelines of this nature will continue to play a central role in producing much needed therapeutics for the health challenges of the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hawkins PCD, Skillman AG, Nicholls A (2007) Comparison of shape-matching and docking as virtual screening tools. J Med Chem 50(1):74–82

    Article  CAS  PubMed  Google Scholar 

  2. Amazon Web Services.: https://aws.amazon.com. Accessed 20 Mar 2023

  3. Microsoft Azure.: https://azure.microsoft.com. Accessed 20 Mar 2023

  4. Bicer DC, Agrawal G A framework for data-intensive computing with cloud bursting. IEEE international conference on cluster computing. Austin, TX, USA, 2011, pp 169–177

    Google Scholar 

  5. Nicholls A, MacCuish NE, MacCuish JD (2004) Variable selection and model validation of 2D and 3D molecular descriptors. J Comp-Aid Mol Des 18:451–474

    Article  CAS  Google Scholar 

  6. Schneider G, Neidhart W, Giller T, Schmidt G (1999) Scaffold hop** by topological pharmacophore search: a contribution to virtual screening. Angew Chem Int Ed Eng 38:2894

    Article  CAS  Google Scholar 

  7. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf Model 50:742–754

    Article  CAS  PubMed  Google Scholar 

  9. Willett P, Barnard J, Downs GM (1998) Chemical similarity searching. J Chem Inf Comput Sci 38:983–996

    Article  CAS  Google Scholar 

  10. Grant JA, Pickup BT (1995) A Gaussian description of molecular shape. J Phys Chem 99:3503–3510

    Article  CAS  Google Scholar 

  11. Kearsley SK, Smith GM (1990) An alternative method for the alignment of molecular structures: maximizing electrostatic and steric overlap. Tetrahedron Comput Method 3:615–663

    Article  CAS  Google Scholar 

  12. Fischer E (1894) Einfluss der Configuration auf die Wirkung der Enzyme. Ber Dtsch Chem Ges 27:2985

    Article  CAS  Google Scholar 

  13. Koshland DE (1994) The key-lock theory and the induced fit theory. Angew Chem Int Ed Eng 33:2375–2378

    Article  Google Scholar 

  14. Galli S (2014) X-ray crystallography: one century of nobel prizes. JChem Ed 91(12):2009–2012

    CAS  Google Scholar 

  15. Hu Y, Cheng K, He L, Zhang X, Jiang B, Jiang L, Li C, Wang G, Yang Y, Liu M (2021) NMR-based methods for protein analysis. Anal Chem 93(4):1866–1879

    Article  CAS  PubMed  Google Scholar 

  16. Jumper J, Evans R, Pritzel A et al (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Halperin I, Ma B, Wolfson H, Nussinov R (2002) Principles of docking: an overview of search algorithms and a guide to scoring functions. Proteins Struct Funct Genet 47:409–443

    Article  CAS  PubMed  Google Scholar 

  18. Leach AR, Gillet VJ (2005) An Introduction to chemoinformatics. Springer, Dordrecht

    Google Scholar 

  19. Triballeau N, Acher F, Brabet I, Pin J, Bertrand H (2005) Virtual screening workflow development guided by the “receiver operating characteristic” curve approach. Application to high-throughput docking on metabotropic glutamate receptor subtype 4. J Med Chem 48(7):2534–2547

    Article  CAS  PubMed  Google Scholar 

  20. Rizzi A, Fioni A (2008) Virtual screening using PLS discriminant analysis and ROC curve approach: an application study on PDE4 inhibitors. J Chem Inf Model 48(8):1686–1692

    Article  CAS  PubMed  Google Scholar 

  21. Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:29–36

    Article  CAS  PubMed  Google Scholar 

  22. Huang N, Shoichet B, Irwin J (2006) Benchmarking sets for molecular docking. J Med Chem 49:6789–6801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jönsson U, Fägerstam L, Ivarsson B, Johnsson B, Karlsson R, Lundh K, Löfås S, Persson B, Roos H, Rönnberg I, Sjölander S, Stenberg E, Ståhlberg R, Urbaniczky C, Östlin H, Malmqvist M (1991) Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology. Biotechniques 11(5):620

    PubMed  Google Scholar 

  24. O’Neill M, Gaisford S (2011) Application and use of isothermal calorimetry in pharmaceutical development. Int J Pharm 417(1-2):83–93

    Article  PubMed  Google Scholar 

  25. Merck Screening Compounds.: https://www.sigmaaldrich.com/GB/en/technical-documents/technical-article/chemistry-and-synthesis/lead-discovery/screening-compounds. Accessed 20 Mar 2023

  26. Irwin J.J.; Shoichet, B.K. ZINC—a free database of commercially available compounds for virtual screening. J Chem Inf Model 2005, 45(1), 177-182.

    Google Scholar 

  27. Gasteiger J, Martin Y, Nicholls A, Oprea T, Stouch T (2018) Leaving us with fond memories, smiles, SMILES and, alas, tears: a tribute to David Weininger, 1952–2016. J Comp-Aided Mol Design 32(2):313–319

    Article  CAS  Google Scholar 

  28. Daylight Chemical Information Systems, SMIRKS: https://www.daylight.com/dayhtml/doc/theory/theory.smirks.html. Accessed 20 Mar 2023

  29. Kazemizadeh A, Ramazani A (2012) Synthetic applications of Passerini reaction. Curr Org Chem 16(4):418–450

    Article  CAS  Google Scholar 

  30. Daylight Chemical Information Systems, SMARTS: https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html. Accessed 20 Mar 2023

  31. RDKit: open-source cheminformatics software. https://www.rdkit.org. Accessed 20 Mar 2023

  32. Irwin JJ, Tang KG, Young J, Dandarchuluun C, Wong BR, Khurelbaatar M, Moroz YS, Mayfield J, Sayle RA (2020) ZINC20—a free ultralarge-scale chemical database for ligand discovery. J Chem Inf Model 60(12):6065–6073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, Light Y, McGlinchey S, Michalovich D, Al-Lazikani B, Overington JP (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40(D1):D1100–D1107

    Article  CAS  PubMed  Google Scholar 

  34. Bento AP, Hersey A, Félix E et al (2020) An open source chemical structure curation pipeline using RDKit. J Cheminf 12(51)

    Google Scholar 

  35. Riniker S, Landrum GA (2015) Better informed distance geometry: using what we know to improve conformation generation. J Chem Inf Comput Sci 55:2562–2574

    Article  CAS  Google Scholar 

  36. Baell JB, Holloway GA (2010) New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem 53(7):2719–2740

    Article  CAS  PubMed  Google Scholar 

  37. Chakravorty SJ, Chan J, Greenwood MN, Popa-Burke I, Remlinger KS, Pickett SD, Green DS, Fillmore MC, Dean TW, Luengo JI, Macarrón R (2018) Nuisance compounds, PAINS filters, and dark chemical matter in the GSK HTS collection. SLAS Discov 23(6):532–544

    Article  CAS  PubMed  Google Scholar 

  38. Berthold MR, Cebron N, Dill F, Gabriel TR, Kötter T, Meinl T, Ohl P, Thiel K, Wiswedel B (2009) KNIME – the Konstanz information miner: version 2.0 and beyond. SIGKDD Explor Newsl 11(1):26–31

    Article  Google Scholar 

  39. Knime workflow system.: https://www.knime.com/. Accessed 20 Mar 2023

  40. Apache Airflow.: https://airflow.apache.org/. Accessed 20 Mar 2023

  41. Laskey KB, Laskey K (2009) Service oriented architecture. WIREs Comp Stat 1:101–105

    Article  Google Scholar 

  42. Python Celery system.: https://docs.celeryq.dev/en/stable/getting-started/introduction.html. Accessed 20 Mar 2023

  43. Mölder F, Jablonski KP, Letcher B et al (2021) Sustainable data analysis with Snakemake. F1000Research 10:33

    Article  PubMed  PubMed Central  Google Scholar 

  44. SnakeMake Workflow Management System.: https://snakemake.readthedocs.io/en/stable/. Accessed 20 Mar 2023

  45. Thönes J (2015) Microservices. IEEE Softw 3(1):116–116

    Article  Google Scholar 

  46. Django Python Framework.: https://www.djangoproject.com/. Accessed 20 Mar 2023

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Joseph Sykora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sykora, V.J. (2024). Automated Virtual Screening. In: Heifetz, A. (eds) High Performance Computing for Drug Discovery and Biomedicine. Methods in Molecular Biology, vol 2716. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3449-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3449-3_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3448-6

  • Online ISBN: 978-1-0716-3449-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation