Molecular Dynamics and Other HPC Simulations for Drug Discovery

  • Protocol
  • First Online:
High Performance Computing for Drug Discovery and Biomedicine

Abstract

High performance computing (HPC) is taking an increasingly important place in drug discovery. It makes possible the simulation of complex biochemical systems with high precision in a short time, thanks to the use of sophisticated algorithms. It promotes the advancement of knowledge in fields that are inaccessible or difficult to access through experimentation and it contributes to accelerating the discovery of drugs for unmet medical needs while reducing costs. Herein, we report how computational performance has evolved over the past years, and then we detail three domains where HPC is essential. Molecular dynamics (MD) is commonly used to explore the flexibility of proteins, thus generating a better understanding of different possible approaches to modulate their activity. Modeling and simulation of biopolymer complexes enables the study of protein-protein interactions (PPI) in healthy and disease states, thus hel** the identification of targets of pharmacological interest. Virtual screening (VS) also benefits from HPC to predict in a short time, among millions or billions of virtual chemical compounds, the best potential ligands that will be tested in relevant assays to start a rational drug design process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A1AR:

A1 Adenosine Receptor

ACE2:

Angiotensin-Converting Enzyme 2

AF:

AlphaFold

AI:

Artificial Intelligence

AMBER:

Assisted Model Building with Energy Refinement

CADD:

Computer-Aided Drug Design

CAPRI:

Critical Assessment of Prediction of Interactions

CASP14:

Critical Assessment of Structure Prediction, round 14

CGenFF:

Charmm General Force Field

CHARMM:

Chemistry at HARvard Molecular Mechanics

COVID-19:

COrona VIrus Disease 2019

CPU:

Central Processing Unit

Cryo-EM:

Cryo-Electron Microscopy

DMTA:

Design, Make, Test, Analyze

DNA:

Deoxyribonucleic Acid

DNN:

Deep Neural Network

DUD-E:

Database of Useful Decoys Enhanced

ECL2:

Extra Cellular Loop 2

FEP:

Free Energy Perturbation

FF:

Force Field

FGFR2:

Fibroblast Growth Factor Receptor 2

GAFF:

Generalized Amber Force Field

GAMD:

Gaussian Accelerated Molecular Dynamics

GPCR:

G-Protein Coupled Receptor

GPU:

Graphical Processing Unit

GROMACS:

GROningen Machine for Chemical Simulations

H2L:

Hit to Lead

HPC:

High-Performance Computing

IC50:

Half Maximal Inhibitory Concentration

IL2:

InterLeukin 2

JAK1:

Janus Kinase 1

JAK2:

Janus Kinase 2

LO:

Lead Optimization

MC:

Monte Carlo

MD:

Molecular Dynamics

MixMD:

Mixed-Solvent Molecular Dynamics

MMFF:

Merck Molecular Force Field

MM-GBSA:

Molecular Mechanics Generalized Born Surface Area

MM-PBSA:

Molecular Mechanics Poisson-Boltzmann Surface Area

MSA:

Multiple Sequence Alignment

MSM:

Markov State Model

NAMD:

Nanoscale Molecular Dynamics

NCATS:

National Center for Advancing Translational Sciences

ns:

nano second

OPLS4:

Optimized Potentials for Liquid Simulation, Version 4

PAM:

Positive Allosteric Modulator

PDB:

Protein Data Bank

PELE:

Protein Energy Landscape Exploration

PFLOP:

Peta FLoating-point Operations Per second

PMF:

Potential of Mean Force

PPI:

Protein-Protein Interactions

PRC:

Pose Ranking Consensus

QCP:

Quaternion-Based Characteristic Polynomial

QM:

Quantum Mechanics

QSAR:

Quantitative Structure Activity Relationship

RBD:

Receptor Binding Domain

RdRp:

RNA-Dependent RNA polymerase

RMSD:

Root Mean Square Deviation

RNA:

Ribonucleic Acid

SARS-CoV-2:

Severe Acute Respiratory Syndrome CoronaVirus 2

SAXS:

Small-Angle X-Ray Scattering

SBVS:

Structure-Based Virtual Screening

TPU:

Tensor Processing Unit

TREMD:

Temperature Replica Exchange Molecular Dynamics

VS:

Virtual Screening

μOR:

μ-Opioid Receptor

μs:

micro second

References

  1. Acharya A, Agarwal R, Baker MB, Baudry J et al (2020) Supercomputer-based ensemble docking drug discovery pipeline with application to Covid-19. J Chem Inf Model 60:5832–5852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mann A (2020) Core concept: nascent exascale supercomputers offer promise, present challenges. Proc Natl Acad Sci U S A 117(37):22623–22625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Murugan NA, Podobas A, Vitali E, Gadioli D, Palermo G, Markidis S (2022) A review on parallel virtual screening softwares for high-performance computers. Pharmaceuticals 15(1):63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jung J, Kobayashi C, Kasahara K, Tan C, Kuroda A, Minami K, Ishiduki S, Nishiki T, Inoue H, Ishikawa Y, Feig M, Sugita Y (2020) New parallel computing algorithm of molecular dynamics for extremely huge scale biological systems. J Comput Chem 42(4):231–241

    Article  PubMed  PubMed Central  Google Scholar 

  5. Jones D, Allen JE, Yang Y, Drew Bennett WF, Gokhale M, Moshiri N, Rosing TS (2022) Accelerators for classical molecular dynamics simulations of biomolecules. J Chem Theory Comput 18(7):4047–4069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vermaas JV, Sedova A, Baker MB, Boehm S, Rogers DM, Larkin J, Glaser J, Smith MD, Hernandez O, Smith JC (2020) Supercomputing pipelines search for therapeutics against COVID-19. Comput Sci Eng 23(1):7–16

    Article  PubMed  Google Scholar 

  7. Kutzner C, Kniep C, Cherian A, Nordstrom L, Grubmüller H, de Groot BL, Gapsys V (2022) GROMACS in the cloud: a global supercomputer to speed up alchemical drug design. J Chem Inf Model 62(7):1691–1711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Puertas-Martín S, Banegas-Luna AJ, Paredes-Ramos M, Redondo JL, Ortigosa PM, Brovarets OO, Pérez-Sánchez H (2020) Is high performance computing a requirement for novel drug discovery and how will this impact academic efforts? Expert Opin Drug Discov 15(9):981–986

    Article  PubMed  Google Scholar 

  9. Kotev M, Sarrat L, Diaz Gonzalez C (2020) User-friendly quantum mechanics: applications for drug discovery. Methods Mol Biol 2114:231–255

    Article  CAS  PubMed  Google Scholar 

  10. Lu C, Wu C, Ghoreishi D, Chen W, Wang L, Damm W, Ross GA, Dahlgren MK, Russell E, Von Bargen CD, Abel R, Friesner RA, Harder ED (2021) OPLS4: improving force field accuracy on challenging regimes of chemical space. J Chem Theory Comput 17:4291–4300

    Article  CAS  PubMed  Google Scholar 

  11. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general Amber Force Field. J Comput Chem 25(9):1157–1174

    Article  CAS  PubMed  Google Scholar 

  12. Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, Mackerell AD Jr (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31(4):671–690

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Halgren TA (1999) MMFF VI. MMFF94s option for energy minimization studies. J Comput Chem 20(7):720–729

    Article  CAS  PubMed  Google Scholar 

  14. Tian C, Kasavajhala K, Belfon KAA, Raguette L, Huang H, Migues AN, Bickel J, Wang Y, Pincay J, Wu Q, Simmerling C (2020) ff19SB: amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution. J Chem Theory Comput 16(1):528–552

    Article  PubMed  Google Scholar 

  15. Brooks BR, Brooks CL III, MacKerell AD Jr, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB, Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus M (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30(10):1545–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kotev M, Pascual R, Almansa C, Guallar V, Soliva R (2018) Pushing the limits of computational structure-based drug design with a cryo-EM structure: the Ca2+ channel α2δ-1 subunit as a test case. J Chem Inf Model 58(8):1707–1715

    Article  CAS  PubMed  Google Scholar 

  17. Zhuang Y, Wang Y, He B, He X, Zhou XE, Guo S, Rao Q, Yang J, Liu J, Zhou Q, Wang X, Liu M, Liu W, Jiang X, Yang D, Jiang H, Shen J, Melcher K, Chen H, Jiang Y, Cheng X, Wang MW, **e X, Xu HE (2022) Molecular recognition of morphine and fentanyl by the human μ-opioid receptor. Cell 185(23):4361–4375

    Article  CAS  PubMed  Google Scholar 

  18. Lopez Quezada L, Silve S, Kelinske M, Liba A, Diaz Gonzalez C, Kotev M, Goullieux L, Sans S, Roubert C, Lagrange S, Bacqué E, Couturier C, Pellet A, Blanc I, Ferron M, Debu F, Li K, Aubé J, Roberts J, Little D, Ling Y, Zhang J, Gold B, Nathan C (2019) Bactericidal disruption of magnesium metallostasis in Mycobacterium tuberculosis is counteracted by mutations in the metal ion transporter CorA. MBio 10(4):e01405–e01419. https://doi.org/10.1128/mBio.01405-19

    Article  PubMed  PubMed Central  Google Scholar 

  19. Brown CM, Corey RA, Gao Y, Choi YK, Gilleron M, Destainville N, Fullam E, Im W, Stansfeld PJ, Chavent M (2022) From molecular dynamics to supramolecular organization: the role of PIM lipids in the originality of the mycobacterial plasma membrane, bioRxiv. https://doi.org/10.1101/2022.06.29.498153

  20. Kotev MI, Ivanov PM (2008) Molecular Mechanics (MM3(pi)) conformational analysis of molecules containing conjugated pi-electron fragments: leucomycin-V. Chirality 20:400–410

    Article  CAS  PubMed  Google Scholar 

  21. Beckert B, Leroy EC, Sothiselvam S, Bock LV, Svetlov MS, Graf M, Arenz S, Abdelshahid M, Seip B, Grubmüller H, Mankin AS, Innis CA, Vázquez-Laslop N, Wilson DN (2021) Structural and mechanistic basis for translation inhibition by macrolide and ketolide antibiotics. Nat Commun 12(1):4466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Arenz S, Bock LV, Graf M, Innis CA, Beckmann R, Grubmüller H, Vaiana AC, Wilson DN (2016) A combined cryo-EM and molecular dynamics approach reveals the mechanism of ErmBL-mediated translation arrest. Nat Commun 7:12026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shaw DE, Deneroff MM, Dror RO, Kuskin JS, Larson RH, Salmon JK et al (2008) Anton, a special-purpose machine for molecular dynamics simulation. Commun ACM 51(7):91–97. https://doi.org/10.1145/1364782.1364802

    Article  Google Scholar 

  24. Shaw DE, Grossman JP, Bank JA, Batson B, Butts JA, Chao JC et al (2014) Anton 2: raising the Bar for performance and programmability in a special-purpose molecular dynamics supercomputer. In: International conference for high performance computing, networking, storage and analysis, SC. IEEE, New York City, pp 41–53. https://doi.org/10.1109/SC.2014.9

    Chapter  Google Scholar 

  25. Xu H, Palpant T, Weinberger C, Shaw DE (2022) Characterizing receptor flexibility to predict mutations that lead to human adaptation of influenza hemagglutinin. J Chem Theory Comput 18(8):4995–5005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shan Y, Mysore VP, Leffler AE, Kim ET, Sagawa S, Shaw DE (2022) How does a small molecule bind at a cryptic binding site ? PLoS Comput Biol 18(3):e1009817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Adamopoulos C, Ahmed TA, Tucker MR, Ung PMU, **ao M, Karoulia Z, Amabile A, Wu X, Aaronson SA, Ang C, Rebecca VW, Brown BD, Schlessinger A, Herlyn M, Wang Q, Shaw DE, Poulikakos PI (2021) Exploiting allosteric properties of RAF and MEK inhibitors to target therapy–resistant tumors driven by oncogenic BRAF signaling. Cancer Discov 11(7):1716–1735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kuzmanic A, Bowman GR, Juarez-Jimenez J, Michel J, Gervasio FL (2020) Investigating cryptic binding sites by molecular dynamics simulations. Acc Chem Res 53(3):654–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zuzic L, Samsudin F, Shivgan AT, Raghuvamsi PV, Marzinek JK, Boags A, Pedebos C, Tulsian NK, Warwicker J, MacAry P, Crispin M, Khalid S, Anand GS, Bond PJ (2022) Uncovering cryptic pockets in the SARS-CoV-2 spike glycoprotein. Structure 30(8):1062–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Smith RD, Carlson HA (2021) Identification of cryptic binding sites using MixMD with standard and accelerated molecular dynamics. J Chem Inf Model 61(3):1287–1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Meller A, Lotthammer JM, Smith LG, Novak B, Lee LA, Kuhn CC, Greenberg L, Leinwand LA, Greenberg MJ, Bowman GR (2023) Drug specificity and affinity are encoded in the probability of cryptic pocket opening in myosin motor domains. elife 12:e83602

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kotev M, Lecina D, Tarragó T, Giralt E, Guallar V (2015) Unveiling prolyl oligopeptidase ligand migration by comprehensive computational techniques. Biophys J 108(1):116–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kotev M, Soliva R, Orozco M (2016) Challenges of docking in large, flexible and promiscuous binding sites. Bioorg Med Chem 24(20):4961–4969

    Article  PubMed  Google Scholar 

  34. Kotev M, Manuel-Manresa P, Hernando E, Soto-Cerrato V, Orozco M, Quesada R, Pérez-Tomás R, Guallar V (2018) Inhibition of human enhancer of zeste homolog 2 with tambjamine analogs. J Chem Inf Model 57(8):2089–2098

    Article  PubMed  Google Scholar 

  35. Liang JJ, Pitsillou E, Ververis K, Guallar V, Hung A, Karagiannis TC (2022) Investigation of small molecule inhibitors of the SARS-CoV-2 papain-like protease by all-atom microsecond modelling, PELE Monte Carlo simulations, and in vitro activity inhibition. Chem Phys Lett 788:139294

    Article  CAS  PubMed  Google Scholar 

  36. Perez C, Soler D, Soliva R, Guallar V (2020) FragPELE: dynamic ligand growing within a binding site. A novel tool for hit-to-Lead drug design. J Chem Inf Model 60(3):1728–1736

    Article  CAS  PubMed  Google Scholar 

  37. Menéndez CA, Byléhn F, Perez-Lemus GR, Alvarado W, de Pablo JJ (2020) Molecular characterization of ebselen binding activity to SARS- CoV-2 main protease. Sci Adv 6(37):eabd0345. https://doi.org/10.1126/sciadv.abd0345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mehdipour AR, Hummer G (2021) Dual nature of human ACE2 glycosylation in binding to SARS-CoV-2 spike. Proc Natl Acad Sci U S A 118(19):e2100425118. https://doi.org/10.1073/pnas.2100425118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Byléhn F, Menéndez CA, Perez-Lemus GR, Alvarado W, De Pablo JJ (2021) Modeling the binding mechanism of remdesivir, favilavir, and ribavirin to SARS-CoV-2 RNA-dependent RNA polymerase. ACS Cent Sci 7(1):164–174. https://doi.org/10.1021/acscentsci.0c01242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Levinthal C (1969) How to fold graciously. Mossbauer Spectroscopy in Biological Systems Proceedings 67(41):22–26. http://www-miller.ch.cam.ac.uk/levinthal/levinthal.html

  41. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596(7873):583–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yin J, Lei J, Yu J, Cui W, Satz AL, Zhou Y, Feng H, Deng J, Su W, Kuai L (2022) Assessment of AI-based protein structure prediction for the NLRP3 target. Molecules 27(18):5797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jones S, Thornton JM (1996) Principles of protein-protein interactions. Proc Natl Acad Sci U S A 93(1):13–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Stumpf MP, Thorne T, de Silva E, Stewart R, An HJ, Lappe M, Wiuf C (2008) Estimating the size of the human interactome. Proc Natl Acad Sci U S A 105(19):6959–6964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mosca R, Céol A, Aloy P (2013) Interactome3D: adding structural details to protein networks. Nat Methods 10(1):47–53

    Article  CAS  PubMed  Google Scholar 

  46. Ruiz Echartea ME, Chauvot de Beauchêne I, Ritchie DW (2019) EROS-DOCK: protein-protein docking using exhaustive branch-and-bound rotational search. Bioinformatics 35(23):5003–5010

    Article  PubMed  Google Scholar 

  47. Soni N, Madhusudhan MS (2017) Computational modeling of protein assemblies. Curr Opin Struct Biol 44:179–189

    Article  CAS  PubMed  Google Scholar 

  48. Porter KA, Desta I, Kozakov D, Vajda S (2019) What method to use for protein-protein docking? Curr Opin Struct Biol 55:1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sable R, Jois S (2015) Surfing the protein-protein interaction surface using docking methods: application to the design of PPI inhibitors. Molecules 20(6):11569–11603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rosell M, Fernández-Recio J (2020) Docking approaches for modeling multi-molecular assemblies. Curr Opin Struct Biol 64:59–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Baspinar A, Cukuroglu E, Nussinov R, Keskin O, Gursoy A (2014) PRISM: a web server and repository for prediction of protein-protein interactions and modeling their 3D complexes. Nucleic Acids Res 42:W285–W289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lensink MF, Velankar S, Kryshtafovych A, Huang SY, Schneidman-Duhovny D, Sali A, Segura J, Fernandez-Fuentes N et al (2016) Prediction of homoprotein and heteroprotein complexes by protein docking and template-based modeling: a CASP-CAPRI experiment. Proteins 84(Suppl 1):323–348

    Article  PubMed  PubMed Central  Google Scholar 

  53. Negroni J, Mosca R, Aloy P (2014) Assessing the applicability of template-based protein docking in the twilight zone. Structure 22(9):1356–1362

    Article  CAS  PubMed  Google Scholar 

  54. Koukos PI, Bonvin AMJJ (2020) Integrative modelling of biomolecular complexes. J Mol Biol 432(9):2861–2881

    Article  CAS  PubMed  Google Scholar 

  55. Mertens HD, Svergun DI (2010) Structural characterization of proteins and complexes using small-angle X-ray solution scattering. J Struct Biol 172(1):128–141

    Article  CAS  PubMed  Google Scholar 

  56. Thalassinos K, Pandurangan AP, Xu M, Alber F, Topf M (2013) Conformational States of macromolecular assemblies explored by integrative structure calculation. Structure 21(9):1500–1508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zeng-Elmore X, Gao XZ, Pellarin R, Schneidman-Duhovny D, Zhang XJ, Kozacka KA, Tang Y, Sali A, Chalkley RJ, Cote RH, Chu F (2014) Molecular architecture of photoreceptor phosphodiesterase elucidated by chemical cross-linking and integrative modeling. J Mol Biol 426(22):3713–3728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Uguzzoni G, John Lovis S, Oteri F, Schug A, Szurmant H, Weigt M (2017) Large-scale identification of coevolution signals across homo-oligomeric protein interfaces by direct coupling analysis. Proc Natl Acad Sci U S A 114(13):E2662–E2671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Katchalski-Katzir E, Shariv I, Eisenstein M, Friesem AA, Aflalo C, Vakser IA (1992) Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques. Proc Natl Acad Sci U S A 89(6):2195–2199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lyskov S, Gray JJ (2008) The RosettaDock server for local protein-protein docking. Nucleic Acids Res 36:W233–W238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Axenopoulos A, Daras P, Papadopoulos GE, Houstis EN (2013) SP-dock: protein-protein docking using shape and physicochemical complementarity. IEEE/ACM Trans Comput Biol Bioinform 10(1):135–150. https://doi.org/10.1109/TCBB.2012.149

    Article  CAS  PubMed  Google Scholar 

  62. Shapovalov MV, Dunbrack RL Jr (2011) A smoothed backbone-dependent rotamer library for proteins derived from adaptive kernel density estimates and regressions. Structure 19(6):844–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Smith GR, Sternberg MJE, Bates PA (2005) The relationship between the flexibility of proteins and their conformational states on forming protein-protein complexes with an application to protein–protein docking. J Mol Biol 347:1077–1101

    Article  CAS  PubMed  Google Scholar 

  64. Jandova Z, Vargiu AV, Bonvin AMJJ (2021) Native or non-native protein-protein docking models? Molecular dynamics to the rescue. J Chem Theory Comput 17(9):5944–5954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Harmalkar A, Gray JJ (2021) Advances to tackle backbone flexibility in protein docking. Curr Opin Struct Biol 67:178–186

    Article  CAS  PubMed  Google Scholar 

  66. Van Zundert GCP, Rodrigues JPGLM, Trellet M, Schmitz C, Kastritis PL, Karaca E, Melquiond ASJ, van Dijk M, de Vries SJ, Bonvin AMJJ (2016) The HADDOCK2.2 web server: user-friendly integrative modeling of biomolecular complexes. J Mol Biol 428(4):720–725

    Article  PubMed  Google Scholar 

  67. Kozakov D, Hall DR, **a B, Porter KA, Padhorny D, Yueh C, Beglov D, Vajda S (2017) The ClusPro web server for protein-protein docking. Nat Protoc 12(2):255–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Torchala M, Moal IH, Chaleil RA, Fernandez-Recio J, Bates PA (2013) SwarmDock: a server for flexible protein-protein docking. Bioinformatics 29(6):807–809

    Article  CAS  PubMed  Google Scholar 

  69. Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33:W363–W367. https://doi.org/10.1093/nar/gki481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pierce BG, Wiehe K, Hwang H, Kim BH, Vreven T, Weng Z (2014) ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinformatics 30(12):1771–1773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tovchigrechko A, Vakser IA (2006) GRAMM-X public web server for protein-protein docking. Nucleic Acids Res 34:W310–W314. https://doi.org/10.1093/nar/gkl206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tunyasuvunakool K, Adler J, Wu Z, Green T, Zielinski M, Žídek A, Bridgland A, Cowie A, Meyer C, Laydon A, Velankar S, Kleywegt GJ, Bateman A, Evans R, Pritzel A, Figurnov M, Ronneberger O, Bates R, Kohl SAA, Potapenko A, Ballard AJ, Romera-Paredes B, Nikolov S, Jain R, Clancy E, Reiman D, Petersen S, Senior AW, Kavukcuoglu K, Birney E, Kohli P, Jumper J, Hassabis D (2021) Highly accurate protein structure prediction for the human proteome. Nature 596(7873):590–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S, Lee GR, Wang J, Cong Q, Kinch LN, Schaeffer RD, Millán C, Park H, Adams C, Glassman CR, DeGiovanni A, Pereira JH, Rodrigues AV, van Dijk AA, Ebrecht AC, Opperman DJ, Sagmeister T, Buhlheller C, Pavkov-Keller T, Rathinaswamy MK, Dalwadi U, Yip CK, Burke JE, Garcia KC, Grishin NV, Adams PD, Read RJ, Baker D (2021) Accurate prediction of protein structures and interactions using a three-track neural network. Science 373(6557):871–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kryshtafovych A, Schwede T, Topf M, Fidelis K, Moult J (2021) Critical assessment of methods of protein structure prediction (CASP)-Round XIV. Proteins 89(12):1607–1617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, Yuan D, Stroe O, Wood G, Laydon A, Žídek A, Green T, Tunyasuvunakool K, Petersen S, Jumper J, Clancy E, Green R, Vora A, Lutfi M, Figurnov M, Cowie A, Hobbs N, Kohli P, Kleywegt G, Birney E, Hassabis D, Velankar S (2022) AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res 50(D1):D439–D444. https://doi.org/10.1093/nar/gkab1061

    Article  CAS  PubMed  Google Scholar 

  76. Ko J, Lee J (2021) Can AlphaFold2 predict protein-peptide complex structures accurately? bioRxiv. https://doi.org/10.1101/2021.07.27.453972

  77. Zhao Y, Rai J, Xu C, He H, Li H (2022) Artificial intelligence-assisted cryoEM structure of Bfr2-Lcp5 complex observed in the yeast small subunit processome. Commun Biol 5(1):523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Evans R, O’Neill M, Pritzel A, Antropova N, Senior A, Green T, Žídek A, Bates R, Blackwell S, Yim J, Ronneberger O, Bodenstein S, Zielinski M, Bridgland A, Potapenko A, Cowie A, Tunyasuvunakool K, Jain R, Clancy E, Kohli P, Jumper J, Hassabis D (2022) Protein complex prediction with AlphaFold-Multimer. bioRxiv. https://doi.org/10.1101/2021.10.04.463034

  79. Rickard MM, Zhang Y, Gruebele M, Pogorelov TV (2019) In-cell protein-protein contacts: transient interactions in the crowd. J Phys Chem Lett 10(18):5667–5673

    Article  CAS  PubMed  Google Scholar 

  80. Nawrocki G, Im W, Sugita Y, Feig M (2019) Clustering and dynamics of crowded proteins near membranes and their influence on membrane bending. Proc Natl Acad Sci U S A 116(49):24562–24567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. LeGrand S, Scheinberg A, Tillack AF, Thavappiragasam M, Vermaas JV, Agarwal R, Larkin J, Poole D, Santos-Martins D, Solis-Vasquez L, Koch A, Forli S, Hernandez O, Smith JC, Sedova A (2020) GPU-accelerated drug discovery with docking on the summit supercomputer: porting, optimization, and application to COVID-19 research. ar**v:2007.03678

    Google Scholar 

  82. Pihan E, Kotev M, Rabal O, Beato C, Diaz Gonzalez C (2021) Fine tuning for success in structure-based virtual screening. J Comput Aided Mol Des 35(12):1195–1206

    Article  CAS  PubMed  Google Scholar 

  83. David L, Mdahoma A, Singh N, Buchoux S, Pihan E, Diaz C, Rabal O (2022) A toolkit for covalent docking with GOLD: from automated ligand preparation with KNIME to bound protein-ligand complexes. Bioinform Adv 2(1):vbac090

    Article  PubMed  PubMed Central  Google Scholar 

  84. Spyrakis F, Benedetti P, Decherchi S, Rocchia W, Cavalli A, Alcaro S, Ortuso F, Baroni M, Cruciani G (2015) A pipeline to enhance ligand virtual screening: integrating molecular dynamics and fingerprints for ligand and proteins. J Chem Inf Model 55:2256–2274

    Article  CAS  PubMed  Google Scholar 

  85. Wang YY, Li L, Chen T, Chen W, Xu Y (2013) Microsecond molecular dynamics simulation of Ab42 and identification of a novel dual inhibitor of Ab42 aggregation and BACE1 activity. Acta Pharmacol Sin 34:1243–1250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Amaro RE, Baudry J, Chodera J, Demir O, McCammon JA, Miao Y, Smith JC (2018) Ensemble docking in drug discovery. Biophys J 114(10):2271–2278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Korb O, Olsson TS, Bowden SJ, Hall RJ, Verdonk ML, Liebeschuetz JW, Cole JC (2012) Potential and limitations of ensemble docking. J Chem Inf Model 52:1262–1274

    Article  CAS  PubMed  Google Scholar 

  88. Mitsutake A, Mori Y, Okamoto Y (2013) Enhanced sampling algorithms. Methods Mol Biol 924:153–195

    Article  CAS  PubMed  Google Scholar 

  89. Ravindranathan KP, Gallicchio E, Friesner RA, McDermott AE, Levy RM (2006) Conformational equilibrium of cytochrome P450 BM-3 complexed with N-Palmitoylglycine: a replica exchange molecular dynamics study. J Am Chem Soc 128(17):5786–5791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Turner M, Mutter ST, Kennedy-Britten OD, Platts JA (2019) Replica exchange molecular dynamics simulation of the coordination of Pt(ii)-Phenanthroline to amyloid-β. RSC Adv 9(60):35089–35097. https://doi.org/10.1039/c9ra04637b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ke Y, ** H, Sun L (2019) Revealing conformational dynamics of 2’-O-methyl-RNA guanine modified G-quadruplex by replica exchange molecular dynamics. Biochem Biophys Res Commun 520(1):14–19

    Article  CAS  PubMed  Google Scholar 

  92. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1:19–25. https://doi.org/10.1016/j.softx.2015.06.001

    Article  Google Scholar 

  93. Theobald DL (2005) Rapid calculation of RMSDs using a quaternion-based characteristic polynomial. Acta Crystallogr, Sect A 61:478–480

    Article  PubMed  Google Scholar 

  94. Bhattarai A, Wang J, Miao Y (2020) Retrospective ensemble docking of allosteric modulators in an adenosine Gprotein-coupled receptor. Biochim Biophys Acta Gen Subj 1864(8):129615. https://doi.org/10.1016/j.bbagen.2020.129615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mysinger MM, Carchia M, Irwin JJ, Shoichet BK (2012) Directory of Useful Decoys, Enhanced (DUD-E): better ligands and decoys for better benchmarking. J Med Chem 55(14):6582–6594. https://doi.org/10.1021/jm300687e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bajusz D, Ferenczy GG, Keserű GM (2016) Discovery of subtype selective Janus Kinase (JAK) inhibitors by structure-based virtual screening. J Chem Inf Model 56(1):234–247

    Article  CAS  PubMed  Google Scholar 

  97. Bajusz D, Ferenczy GG, Keserű GM (2016) Ensemble docking-based virtual screening yields novel spirocyclic JAK1 inhibitors. J Mol Graph Model 70:275–283

    Article  CAS  PubMed  Google Scholar 

  98. Diaz C, Herbert C, Vermat T, Alcouffe C, Bozec T, Sibrac D, Herbert JM, Ferrara P, Bono F, Ferran E (2014) Virtual screening on an α-helix to β-strand switchable region of the FGFR2 extracellular domain revealed positive and negative modulators. Proteins 82(11):2982–2997

    Article  CAS  PubMed  Google Scholar 

  99. Li Y, Liu ZH, Han L, Li J, Liu J, Zhao ZX, Wang RX (2014) Comparative assessment of scoring functions on an updated benchmark: 1. Compilation of the test set. J Chem Inf Model 54(6):1700–1716

    Article  CAS  PubMed  Google Scholar 

  100. Li Y, Han L, Liu Z, Wang R (2014) Comparative assessment of scoring functions on an updated benchmark: 2. Evaluation methods and general results. J Chem Inf Model 54(6):1717–1736

    Article  CAS  PubMed  Google Scholar 

  101. Park H, Eom JW, Kim YH (2014) Consensus scoring approach to identify the inhibitors of AMP-activated protein kinase a2 with virtual screening. J Chem Inf Model 54:2139–2146

    Article  CAS  PubMed  Google Scholar 

  102. Houston DR, Walkinshaw MD (2013) Consensus docking: improving the reliability of docking in a virtual screening context. J Chem Inf Model 53(2):384–390

    Article  CAS  PubMed  Google Scholar 

  103. Scardino V, Bollini M, Cavasotto CN (2021) Combination of pose and rank consensus in docking-based virtual screening: the best of both worlds. RSC Adv 11(56):35383–35391. https://doi.org/10.1039/d1ra05785e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wang E, Sun H, Wang J, Wang Z, Liu H, Zhang JZH, Hou T (2019) End-point binding free energy calculation with MM/PBSA and MM/GBSA: strategies and applications in drug design. Chem Rev 119:9478–9508

    Article  CAS  PubMed  Google Scholar 

  105. Zhang X, Wong SE, Lightstone FC (2014) Toward fully automated high performance computing drug discovery: a massively parallel virtual screening pipeline for docking and molecular mechanics/generalized Born surface area rescoring to improve enrichment. J Chem Inf Model 54(1):324–337

    Article  CAS  PubMed  Google Scholar 

  106. Poli G, Granchi C, Rizzolio F, Tuccinardi T (2020) Application of MM-PBSA methods in virtual screening. Molecules 25(8):1971. https://doi.org/10.3390/molecules25081971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Yau MQ, Emtage AL, Loo JSE (2020) Benchmarking the performance of MM/PBSA in virtual screening enrichment using the GPCR-bench dataset. J Comput Aided Mol Des 34(11):1133–1145

    Article  CAS  PubMed  Google Scholar 

  108. Zhou Y, Lu X, Du C, Liu Y, Wang Y, Hong KH, Chen Y, Sun H (2021) Novel BuChE-IDO1 inhibitors from sertaconazole: virtual screening, chemical optimization and molecular modeling studies. Bioorg Med Chem Lett 34:127756. https://doi.org/10.1016/j.bmcl.2020.127756

    Article  CAS  PubMed  Google Scholar 

  109. Mittal L, Kumari A, Srivastava M, Singh M, Asthana S (2021) Identification of potential molecules against COVID-19 main protease through structure-guided virtual screening approach. J Biomol Struct Dyn 39(10):3662–3680

    Article  CAS  PubMed  Google Scholar 

  110. Lee HS, Jo S, Lim HS, Im W (2012) Application of binding free energy calculations to prediction of binding modes and affinities of MDM2 and MDMX inhibitors. J Chem Inf Model 52(7):1821–1832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Park H, Jung HY, Mah S, Hong S (2018) Systematic computational design and identification of low Picomolar inhibitors of Aurora Kinase. J Chem Inf Model 58(3):700–709

    Article  CAS  PubMed  Google Scholar 

  112. Li Z, Li X, Huang YY, Wu Y, Liu R, Zhou L, Lin Y, Wu D, Zhang L, Liu H, Xu X, Yu K, Zhang Y, Cui J, Zhan CG, Wang X, Luo HB (2020) Identify potent SARS-CoV-2 main protease inhibitors via accelerated free energy perturbation-based virtual screening of existing drugs. Proc Natl Acad Sci U S A 117(44):27381–27387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Leit S, Greenwood JR, Mondal S, Carriero S, Dahlgren M, Harriman GC, Kennedy-Smith JJ, Kapeller R, Lawson JP, Romero DL, Toms AV, Shelley M, Wester RT, Westlin W, McElwee JJ, Miao W, Edmondson SD, Masse CE (2022) Potent and selective TYK2-JH1 inhibitors highly efficacious in rodent model of psoriasis. Bioorg Med Chem Lett 73:128891. https://doi.org/10.1016/j.bmcl.2022.128891

    Article  CAS  PubMed  Google Scholar 

  114. Deflorian F, Perez-Benito L, Lenselink EB, Congreve M, van Vlijmen HWT, Mason JS, Graaf C, Tresadern G (2020) Accurate prediction of GPCR ligand binding affinity with free energy perturbation. J Chem Inf Model 60(11):5563–5579

    Article  CAS  PubMed  Google Scholar 

  115. Cappel D, Hall ML, Lenselink EB, Beuming T, Qi J, Bradner J, Sherman W (2016) Relative binding free energy calculations applied to protein homology models. J Chem Inf Model 56(12):2388–2400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ruddigkeit L, van Deursen R, Blum LC, Reymond JL (2012) Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17. J Chem Inf Model 52(11):2864–2875

    Article  CAS  PubMed  Google Scholar 

  117. Grygorenko O (2021) Enamine LTD.: the science and business of organic chemistry and beyond. Eur J Org Chem 2021(47):6474–6477. https://doi.org/10.1002/ejoc.202101210

    Article  CAS  Google Scholar 

  118. Irwin JJ, Tang KG, Young J, Dandarchuluun C, Wong BR, Khurelbaatar M, Moroz YS, Mayfield J, Sayle RA (2020) ZINC20-a free ultralarge-scale chemical database for ligand discovery. J Chem Inf Model 60(12):6065–6073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Gadioli D, Vitali E, Ficarelli F, Latini C, Manelfi C, Talarico C, Silvano C, Cavazzoni C, Palermo G, Beccari AR (2021) EXSCALATE: An extreme-scale in-silico virtual screening platform to evaluate 1 trillion compounds in 60 h on 81 PFLOPS supercomputers. ar**v:2110.11644. https://doi.org/10.48550/ar**v.2110.11644

  120. Ton AT, Gentile F, Hsing M, Ban F, Cherkasov A (2020) Rapid identification of potential inhibitors of SARS-CoV-2 main protease by Deep Docking of 1.3 billion compounds. Mol Inform 39(8):e2000028. https://doi.org/10.1002/minf.202000028

    Article  CAS  PubMed  Google Scholar 

  121. Gentile F, Fernandez M, Ban F, Ton AT, Mslati H, Perez CF, Leblanc E, Yaacoub JC, Gleave J, Stern A, Wong B, Jean F, Strynadka N, Cherkasov A (2021) Automated discovery of noncovalent inhibitors of SARS-CoV-2 main protease by consensus Deep Docking of 40 billion small molecules. Chem Sci 12(48):15960–15974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Gentile F, Yaacoub JC, Gleave J, Fernandez M, Ton AT, Ban F, Stern A, Cherkasov A (2022) Artificial intelligence-enabled virtual screening of ultra-large chemical libraries with deep docking. Nat Protoc 17(3):672–697

    Article  CAS  PubMed  Google Scholar 

  123. Muller C, Rabal O, Diaz Gonzalez C (2022) Artificial intelligence, machine learning, and deep learning in real-life drug design cases. Methods Mol Biol 2390:383–407. https://doi.org/10.1007/978-1-0716-1787-8_16

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Brice Sautier and Gaurao Dhoke (Evotec (France) SAS, Toulouse, France) for valuable suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantino Diaz Gonzalez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kotev, M., Diaz Gonzalez, C. (2024). Molecular Dynamics and Other HPC Simulations for Drug Discovery. In: Heifetz, A. (eds) High Performance Computing for Drug Discovery and Biomedicine. Methods in Molecular Biology, vol 2716. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3449-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3449-3_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3448-6

  • Online ISBN: 978-1-0716-3449-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation