Using Linear Motif Database Resources to Identify SH2 Domain Binders

  • Protocol
  • First Online:
SH2 Domains

Abstract

The SH2-binding phosphotyrosine class of short linear motifs (SLiMs) are key conditional regulatory elements, particularly in signaling protein complexes beneath the cell’s plasma membrane. In addition to transmitting cellular signaling information, they can also play roles in cellular hijack by invasive pathogens. Researchers can take advantage of bioinformatics tools and resources to predict the motifs at conserved phosphotyrosine residues in regions of intrinsically disordered protein. A candidate SH2-binding motif can be established and assigned to one or more of the SH2 domain subgroups. It is, however, not so straightforward to predict which SH2 domains are capable of binding the given candidate. This is largely due to the cooperative nature of the binding amino acids which enables poorer binding residues to be tolerated when the other residues are optimal. High-throughput peptide arrays are powerful tools used to derive SH2 domain-binding specificity, but they are unable to capture these cooperative effects and also suffer from other shortcomings. Tissue and cell type expression can help to restrict the list of available interactors: for example, some well-studied SH2 domain proteins are only present in the immune cell lineages. In this article, we provide a table of motif patterns and four bioinformatics strategies that introduce a range of tools that can be used in motif hunting in cellular and pathogen proteins. Experimental followup is essential to determine which SH2 domain/motif-containing proteins are the actual functional partners.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Liu BA, Jablonowski K, Raina M et al (2006) The human and mouse complement of SH2 domain proteins-establishing the boundaries of phosphotyrosine signaling. Mol Cell 22(6):851–868

    Article  PubMed  Google Scholar 

  2. Suga H, Dacre M, de Mendoza A et al (2012) Genomic survey of premetazoans shows deep conservation of cytoplasmic tyrosine kinases and multiple radiations of receptor tyrosine kinases. Sci Signal 5(222):ra35

    Google Scholar 

  3. Liu BA, Shah E, Jablonowski K et al (2011) The SH2 domain-containing proteins in 21 species establish the provenance and scope of phosphotyrosine signaling in eukaryotes. Sci Signal 4(202):ra83

    Google Scholar 

  4. Marasco M, Carlomagno T (2020) Specificity and regulation of phosphotyrosine signaling through SH2 domains. J Struct Biol X 4:100026

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Pawson T (2004) Specificity in signal transduction: from phosphotyrosine-SH2 domain interactions to complex cellular systems. Cell 116(2):191–203

    Article  CAS  PubMed  Google Scholar 

  6. Liu BA, Nash PD (2012) Evolution of SH2 domains and phosphotyrosine signalling networks. Philos Trans R Soc Lond Ser B Biol Sci 367(1602):2556–2573

    Article  CAS  Google Scholar 

  7. Kaneko T, Stogios PJ, Ruan X et al (2018) Identification and characterization of a large family of superbinding bacterial SH2 domains. Nat Commun 9(1):4549

    Article  PubMed  PubMed Central  Google Scholar 

  8. Samano-Sanchez H, Gibson TJ (2020) Mimicry of Short Linear Motifs by bacterial pathogens: a drugging opportunity. Trends Biochem Sci 45(6):526–544

    Article  CAS  PubMed  Google Scholar 

  9. Phillips N, Hayward RD, Koronakis V (2004) Phosphorylation of the enteropathogenic E. coli receptor by the Src-family kinase c-Fyn triggers actin pedestal formation. Nat Cell Biol 6(7):618–625

    Article  CAS  PubMed  Google Scholar 

  10. Kaneko T, Huang H, Zhao B et al (2010) Loops govern SH2 domain specificity by controlling access to binding pockets. Sci Signal 3(120):ra34

    Google Scholar 

  11. Waksman G, Shoelson SE, Pant N et al (1993) Binding of a high affinity phosphotyrosyl peptide to the Src SH2 domain: crystal structures of the complexed and peptide-free forms. Cell 72(5):779–790

    Article  CAS  PubMed  Google Scholar 

  12. Waksman G, Kominos D, Robertson SC et al (1992) Crystal structure of the phosphotyrosine recognition domain SH2 of v-src complexed with tyrosine-phosphorylated peptides. Nature 358(6388):646–653

    Article  CAS  PubMed  Google Scholar 

  13. Machida K, Liu B (2017) Binding assays using recombinant SH2 domains: far-Western, pull-down, and fluorescence polarization. Methods Mol Biol 1555:307–330

    Article  CAS  PubMed  Google Scholar 

  14. Ladbury JE, Lemmon MA, Zhou M et al (1995) Measurement of the binding of tyrosyl phosphopeptides to SH2 domains: a reappraisal. Proc Natl Acad Sci U S A 92(8):3199–3203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tinti M, Panni S, Cesareni G (2017) Profiling Phosphopeptide-binding domain recognition specificity using peptide microarrays. Methods Mol Biol 1518:177–193

    Article  CAS  PubMed  Google Scholar 

  16. Tinti M, Kiemer L, Costa S et al (2013) The SH2 domain interaction landscape. Cell Rep 3(4):1293–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu BA (2017) Characterizing SH2 domain specificity and network interactions using SPOT peptide arrays. Methods Mol Biol 1555:357–373

    Article  CAS  PubMed  Google Scholar 

  18. Huang H, Li L, Wu C et al (2008) Defining the specificity space of the human SRC homology 2 domain. Mol Cell Proteomics 7(4):768–784

    Article  CAS  PubMed  Google Scholar 

  19. Machida K, Thompson CM, Dierck K et al (2007) High-throughput phosphotyrosine profiling using SH2 domains. Mol Cell 26(6):899–915

    Article  CAS  PubMed  Google Scholar 

  20. Kaneko T, Joshi R, Feller SM, Li SS (2012) Phosphotyrosine recognition domains: the typical, the atypical and the versatile. Cell Commun Signal 10(1):32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu BA, Jablonowski K, Shah EE et al (2010) SH2 domains recognize contextual peptide sequence information to determine selectivity. Mol Cell Proteomics 9(11):2391–2404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kumar M, Michael S, Alvarado-Valverde J et al (2022) The Eukaryotic Linear Motif resource: 2022 release. Nucleic Acids Res 50(D1):D497–D508

    Article  CAS  PubMed  Google Scholar 

  23. Hornbeck PV, Kornhauser JM, Latham V et al (2019) 15 years of PhosphoSitePlus(R): integrating post-translationally modified sites, disease variants and isoforms. Nucleic Acids Res 47(D1):D433–DD41

    Article  CAS  PubMed  Google Scholar 

  24. Farrah T, Deutsch EW, Hoopmann MR et al (2013) The state of the human proteome in 2012 as viewed through PeptideAtlas. J Proteome Res 12(1):162–171

    Article  CAS  PubMed  Google Scholar 

  25. Dinkel H, Chica C, Via A et al (2011) Phospho.ELM: a database of phosphorylation sites--update 2011. Nucleic Acids Res 39(Database issue):D261–7

    Google Scholar 

  26. UniProt C (2021) UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res 49(D1):D480–D4D9

    Article  Google Scholar 

  27. Quaglia F, Meszaros B, Salladini E et al (2022) DisProt in 2022: improved quality and accessibility of protein intrinsic disorder annotation. Nucleic Acids Res 50(D1):D480–D4D7

    Article  CAS  PubMed  Google Scholar 

  28. Piovesan D, Necci M, Escobedo N et al (2021) MobiDB: intrinsically disordered proteins in 2021. Nucleic Acids Res 49(D1):D361–D3D7

    Article  CAS  PubMed  Google Scholar 

  29. Erdos G, Pajkos M, Dosztanyi Z (2021) IUPred3: prediction of protein disorder enhanced with unambiguous experimental annotation and visualization of evolutionary conservation. Nucleic Acids Res 49(W1):W297–W303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jumper J, Evans R, Pritzel A et al (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596(7873):583–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mirdita M, Schutze K, Moriwaki Y et al (2022) ColabFold: making protein folding accessible to all. Nat Methods 19(6):679–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Uhlen M, Fagerberg L, Hallstrom BM et al (2015) Proteomics. Tissue-based map of the human proteome. Science 347(6220):1260419

    Article  Google Scholar 

  33. Schreiber F, Patricio M, Muffato M et al (2014) TreeFam v9: a new website, more species and orthology-on-the-fly. Nucleic Acids Res 42(Database issue):D922–5

    Google Scholar 

  34. Waterhouse AM, Procter JB, Martin DM et al (2009) Jalview Version 2--a multiple sequence alignment editor and analysis workbench. Bioinformatics 25(9):1189–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Procter JB, Carstairs GM, Soares B et al (2021) Alignment of biological sequences with Jalview. Methods Mol Biol 2231:203–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jehl P, Manguy J, Shields DC et al (2016) ProViz-a web-based visualization tool to investigate the functional and evolutionary features of protein sequences. Nucleic Acids Res 44(W1):W11–W15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Obenauer JC, Cantley LC, Yaffe MB (2003) Scansite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res 31(13):3635–3641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Davey NE, Haslam NJ, Shields DC, Edwards RJ (2010) SLiMFinder: a web server to find novel, significantly over-represented, short protein motifs. Nucleic Acids Res 38(Web Server issue):W534–9

    Google Scholar 

  39. Kundu K, Mann M, Costa F, Backofen R (2014) MoDPepInt: an interactive web server for prediction of modular domain-peptide interactions. Bioinformatics 30(18):2668–2669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Krystkowiak I, Davey NE (2017) SLiMSearch: a framework for proteome-wide discovery and annotation of functional modules in intrinsically disordered regions. Nucleic Acids Res 45(W1):W464–W4W9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang J, Li J, Hou Y et al (2021) BastionHub: a universal platform for integrating and analyzing substrates secreted by Gram-negative bacteria. Nucleic Acids Res 49(D1):D651–D6D9

    Article  CAS  PubMed  Google Scholar 

  42. Teufel F, Almagro Armenteros JJ et al (2022) SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat Biotechnol 40(7):1023–1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Karp PD, Billington R, Caspi R et al (2019) The BioCyc collection of microbial genomes and metabolic pathways. Brief Bioinform 20(4):1085–1093

    Article  CAS  PubMed  Google Scholar 

  44. Kliche J, Kuss H, Ali M, Ivarsson Y (2021) Cytoplasmic short linear motifs in ACE2 and integrin beta3 link SARS-CoV-2 host cell receptors to mediators of endocytosis and autophagy. Sci Signal 14(665):eabf1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Frese S, Schubert WD, Findeis AC et al (2006) The phosphotyrosine peptide binding specificity of Nck1 and Nck2 Src homology 2 domains. J Biol Chem 281(26):18236–18245

    Article  CAS  PubMed  Google Scholar 

  46. Campellone KG, Giese A, Tipper DJ, Leong JM (2002) A tyrosine-phosphorylated 12-amino-acid sequence of enteropathogenic Escherichia coli Tir binds the host adaptor protein Nck and is required for Nck localization to actin pedestals. Mol Microbiol 43(5):1227–1241

    Article  CAS  PubMed  Google Scholar 

  47. de Groot JC, Schluter K, Carius Y et al (2011) Structural basis for complex formation between human IRSp53 and the translocated intimin receptor Tir of enterohemorrhagic E. coli. Structure 19(9):1294–1306

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lind SB, Artemenko KA, Pettersson U (2012) A strategy for identification of protein tyrosine phosphorylation. Methods 56(2):275–283

    Article  CAS  PubMed  Google Scholar 

  49. Ke M, Chu B, Lin L, Tian R (2017) SH2 domains as affinity reagents for Phosphotyrosine protein enrichment and proteomic analysis. Methods Mol Biol 1555:395–406

    Article  CAS  PubMed  Google Scholar 

  50. Kalyuzhnyy A, Eyers PA, Eyers CE et al (2022) Profiling the human Phosphoproteome to estimate the true extent of protein phosphorylation. J Proteome Res 21(6):1510–1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Martyn GD, Veggiani G, Kusebauch U et al (2022) Engineered SH2 domains for targeted Phosphoproteomics. ACS Chem Biol 17(6):1472–1484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Weiss SM, Ladwein M, Schmidt D et al (2009) IRSp53 links the enterohemorrhagic E. coli effectors Tir and EspFU for actin pedestal formation. Cell Host Microbe 5(3):244–258

    Article  CAS  PubMed  Google Scholar 

  53. Tunyasuvunakool K, Adler J, Wu Z et al (2021) Highly accurate protein structure prediction for the human proteome. Nature 596(7873):590–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mistry J, Chuguransky S, Williams L et al (2021) Pfam: the protein families database in 2021. Nucleic Acids Res 49(D1):D412–D4D9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

L.B.C. is a National Research Council Investigator (CONICET, Argentina) and has received funding from Agencia Nacional de Promocion Cientifica y Tecnológica (ANPCyT) Grant #PICT-2017/1924 and #PICT-2019/02119. L.B.C. and T.J.G. received support from the European Union’s Horizon 2020 Marie Skłodowska-Curie action #778247 (IDPfun).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucía B. Chemes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sámano-Sánchez, H., Gibson, T.J., Chemes, L.B. (2023). Using Linear Motif Database Resources to Identify SH2 Domain Binders. In: Carlomagno, T., Köhn, M. (eds) SH2 Domains. Methods in Molecular Biology, vol 2705. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3393-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3393-9_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3392-2

  • Online ISBN: 978-1-0716-3393-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation