Investigating Pangenome Graphs Using Wheat Panache

  • Protocol
  • First Online:
Plant Genomic and Cytogenetic Databases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2703))

Abstract

Pangenome graphs quickly become the central data structure representing the diversity of variation we see across related genomes. Pangenome graphs have been published for some species, including plants of agronomic interest. However, visualizing these graphs is not easy as the graphs are large, and variants within these graphs are complex. Tools are needed to visualize graph data structures. Here, we present a workflow to search and visualize a wheat pangenome graph using Wheat Panache. The approach presented assists researchers interested in wheat genomics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tettelin H, Masignani V, Cieslewicz MJ et al (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc Natl Acad Sci U S A 102:13950–13955. https://doi.org/10.1073/pnas.0506758102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Danilevicz MF, Fernandez CGT, Marsh JI et al (2020) Plant pangenomics: approaches, applications and advancements. Curr Opin Plant Biol 54:18–25. https://doi.org/10.1016/j.pbi.2019.12.005

    Article  CAS  PubMed  Google Scholar 

  3. Bayer PE, Golicz AA, Scheben A et al (2020) Plant pan-genomes are the new reference. Nat Plants 6:914–920. https://doi.org/10.1038/s41477-020-0733-0

    Article  PubMed  Google Scholar 

  4. Golicz AA, Bayer PE, Bhalla PL et al (2020) Pangenomics comes of age: from bacteria to plant and animal applications. Trends Genet 36:132–145. https://doi.org/10.1016/j.tig.2019.11.006

    Article  CAS  PubMed  Google Scholar 

  5. Hurgobin B, Edwards E (2017) SNP discovery using a pangenome: has the single reference approach become obsolete? Biology 6:21. https://doi.org/10.3390/biology6010021

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yao W, Li G, Zhao H et al (2015) Exploring the rice dispensable genome using a metagenome-like assembly strategy. Genome Biol 16:1–20. https://doi.org/10.1186/s13059-015-0757-3

    Article  Google Scholar 

  7. Hirsch CN, Foerster JM, Johnson JM et al (2014) Insights into the maize pan-genome and pan-transcriptome. Plant Cell 26:121–135. https://doi.org/10.1105/tpc.113.119982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li YH, Zhou G, Ma J et al (2014) De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat Biotechnol 32:1045–1052. https://doi.org/10.1038/nbt.2979

    Article  CAS  PubMed  Google Scholar 

  9. Golicz AA, Bayer PE, Barker GC et al (2016) The pangenome of an agronomically important crop plant Brassica oleracea. Nat Commun 7:13390. https://doi.org/10.1038/ncomms13390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhao J, Bayer PE, Ruperao P et al (2020) Trait associations in the pangenome of pigeon pea (Cajanus cajan). Plant Biotechnol J 18:1946–1954. https://doi.org/10.1111/pbi.13354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Garg G, Kamphuis LG, Bayer PE et al (2022) A pan-genome and chromosome-length reference genome of narrow-leafed lupin (Lupinus angustifolius) reveals genomic diversity and insights into key industry and biological traits. Plant J 111:1252–1266. https://doi.org/10.1111/tpj.15885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rijzaani H, Bayer PE, Rouard M et al (2022) The pangenome of banana highlights differences between genera and genomes. Plant Genome 15:e20100. https://doi.org/10.1002/tpg2.20100

    Article  CAS  PubMed  Google Scholar 

  13. Shang L, Li X, He H et al (2022) A super pan-genomic landscape of rice. Cell Res 32:878–896. https://doi.org/10.1038/s41422-022-00685-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang F, Xue H, Dong X et al (2022) Long-read sequencing of 111 rice genomes reveals significantly larger pan-genomes. Genome Res 32:853–863. https://doi.org/10.1101/gr.276015.121

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhao Q, Feng Q, Lu H et al (2018) Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice. Nat Genet 50:278–284. https://doi.org/10.1038/s41588-018-0041-z

    Article  CAS  PubMed  Google Scholar 

  16. Bayer PE, Valliyodan B, Hu H et al (2022) Sequencing the USDA core soybean collection reveals gene loss during domestication and breeding. Plant Genome 15:e20109. https://doi.org/10.1002/tpg2.20109

    Article  CAS  PubMed  Google Scholar 

  17. Liu Y, Du H, Li P et al (2020) Pan-genome of wild and cultivated soybeans. Cell 182:162–176. https://doi.org/10.1016/j.cell.2020.05.023

    Article  CAS  PubMed  Google Scholar 

  18. Torkamaneh D, Lemay MA, Belzile F (2021) The pan-genome of the cultivated soybean (PanSoy) reveals an extraordinarily conserved gene content. Plant Biotechnol J 19:1852–1862. https://doi.org/10.1111/pbi.13600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Berkman PJ, Skarshewski A, Lorenc MT et al (2011) Sequencing and assembly of low copy and genic regions of isolated Triticum aestivum chromosome arm 7DS. Plant Biotechnol J 9:768–775. https://doi.org/10.1111/j.1467-7652.2010.00587.x

    Article  CAS  PubMed  Google Scholar 

  20. Berkman PJ, Visendi P, Lee HC et al (2013) Dispersion and domestication shaped the genome of bread wheat. Plant Biotechnol J 11:564–571. https://doi.org/10.1111/pbi.12044

    Article  CAS  PubMed  Google Scholar 

  21. Berkman PJ, Skarshewski A, Manoli S et al (2012) Sequencing wheat chromosome arm 7BS delimits the 7BS/4AL translocation and reveals homoeologous gene conservation. Theor Appl Genet 124:423–432. https://doi.org/10.1007/s00122-011-1717-2

    Article  CAS  PubMed  Google Scholar 

  22. Zimin AV, Puiu D, Hall R et al (2017) The first near-complete assembly of the hexaploid bread wheat genome, Triticum aestivum. Gigascience 6:gix097. https://doi.org/10.1093/gigascience/gix097

    Article  Google Scholar 

  23. International Wheat Genome Sequencing Consortium (IWGSC), Appels R, Eversole K et al (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:eaar7191. https://doi.org/10.1126/science.aar7191

    Article  CAS  Google Scholar 

  24. Walkowiak S, Gao L, Monat C et al (2020) Multiple wheat genomes reveal global variation in modern breeding. Nature 588:277–283. https://doi.org/10.1038/s41586-020-2961-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Alonge M, Shumate A, Puiu D et al (2020) Chromosome-scale assembly of the bread wheat genome reveals thousands of additional gene copies. Genetics 216:599–608. https://doi.org/10.1534/genetics.120.303501

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sato K, Abe F, Mascher M et al (2021) Chromosome-scale genome assembly of the transformation-amenable common wheat cultivar ‘Fielder’. DNA Res 28:dsab008. https://doi.org/10.1093/dnares/dsab008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Montenegro JD, Golicz AA, Bayer PE et al (2017) The pangenome of hexaploid bread wheat. Plant J 90:1007–1013. https://doi.org/10.1111/tpj.13515

    Article  CAS  PubMed  Google Scholar 

  28. Edwards D, Wilcox S, Barrero RA et al (2012) Bread matters: a national initiative to profile the genetic diversity of Australian wheat. Plant Biotechnol J 10:703–708. https://doi.org/10.1111/j.1467-7652.2012.00717.x

    Article  CAS  PubMed  Google Scholar 

  29. Eizenga JM, Novak AM, Sibbesen JA et al (2020) Pangenome graphs. Annu Rev Genomics Hum Genet 21:139–162. https://doi.org/10.1146/annurev-genom-120219-080406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li H, Feng X, Chu C (2020) The design and construction of reference pangenome graphs with minigraph. Genome Biol 21:265. https://doi.org/10.1186/s13059-020-02168-z

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bayer PE, Petereit J, Durant É et al (2022) Wheat Panache: a pangenome graph database representing presence–absence variation across sixteen bread wheat genomes. Plant Genome 15:e20221. https://doi.org/10.1002/tpg2.20221

    Article  CAS  PubMed  Google Scholar 

  32. Zhou Y, Zhang Z, Bao Z et al (2022) Graph pangenome captures missing heritability and empowers tomato breeding. Nature 606:527–534. https://doi.org/10.1038/s41586-022-04808-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Durant É, Sabot F, Conte M et al (2021) Panache: a web browser-based viewer for linearized pangenomes. Bioinformatics 37:4556–4558. https://doi.org/10.1093/bioinformatics/btab688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lai K, Berkman PJ, Lorenc MT et al (2012) WheatGenome. info: an integrated database and portal for wheat genome information. Plant Cell Physiol 53:e2. https://doi.org/10.1093/pcp/pcr141

    Article  CAS  PubMed  Google Scholar 

  35. Blake VC, Woodhouse MR, Lazo GR et al (2019) GrainGenes: centralized small grain resources and digital platform for geneticists and breeders. Database 2019:baz065. https://doi.org/10.1093/database/baz065

    Article  PubMed  PubMed Central  Google Scholar 

  36. Alaux M, Rogers J, Letellier T et al (2018) Linking the International Wheat Genome Sequencing Consortium bread wheat reference genome sequence to wheat genetic and phenomic data. Genome Biol 19:111. https://doi.org/10.1186/s13059-018-1491-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Keilwagen J, Lehnert H, Berner T et al (2022) Detecting major introgressions in wheat and their putative origins using coverage analysis. Sci Rep 12:1908. https://doi.org/10.1038/s41598-022-05865-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Edwards .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bayer, P.E., Edwards, D. (2023). Investigating Pangenome Graphs Using Wheat Panache. In: Garcia, S., Nualart, N. (eds) Plant Genomic and Cytogenetic Databases. Methods in Molecular Biology, vol 2703. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3389-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3389-2_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3388-5

  • Online ISBN: 978-1-0716-3389-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation