Production of 11α-Hydroxysteroid Derivatives by Corynebacterium glutamicum Expressing the Rhizopus oryzae Hydroxylating System

  • Protocol
  • First Online:
Microbial Steroids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2704))

  • 364 Accesses

Abstract

Hydroxylation of steroids has acquired special relevance for the pharmaceutical industry. Particularly, the 11α-hydroxylation of steroids is a process of biotechnological importance currently carried out at industrial scale for the production of contraceptive drugs and glucocorticoids. This process is performed by several fungal species including Rhizopus nigricans, Aspergillus ochraceus, Aspergillus niger, and Rhizopus oryzae that are used to produce by biotransformation hydroxylated steroids for pharmaceutical purposes (Wang et al., J Steroid Biochem Mol Biol 171:254–261, 2017). However, the development of more efficient biotransformation processes is essential since the steroidal derivatives obtained by the in vivo hydroxylation are often a mixture of hydroxylated compounds in different positions of the steroid molecule. This phenomenon is due to the large number of different CYPs contained in the fungal strains.

The genes responsible for the 11α-hydroxylase activity in R. oryzae consisting in the cytochrome CYP509C12 and its redox partner, the reductase RoCPR1, have been chemically synthetized forming a synthetic operon named FUN optimized to be expressed in bacteria. To express this operon, we have selected the strain Corynebacterium glutamicum R31 that is a robust and GRAS bacterial strain widely used for industrial purposes. The synthetic operon has been cloned in the pECXK-99E vector, yielding pXKFUN plasmid, and transformed C. glutamicum R31 to generate C. glutamicum R31 (pXKFUN) strain. This strain is not a steroid degrader and can efficiently transport C19 and C21 steroids across the cytoplasmic membrane (García-Fernandez et al. Catalysts 316:1–12, 2017). C. glutamicum can be used as a clean host for steroid biotransformation, because it does not introduce additional undesired side reactions on the steroids, thus reducing the contamination of the final products (Felpeto-Santero et al., Microbiol Biotechnol 12:856–868, 2019). Here we show a proof of concept that C. glutamicum can be used as a suitable chassis to perform steroid biotransformation expressing eukaryotic cytochromes. The protocol below provides detailed information on steroid 11α-hydroxylations by Corynebacterium recombinant strain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kollerov V, Shutov A, Fokina V et al (2010) Bioconversion of C19- and C21-steroids with parent and mutant strains of Curvularia lunata. Prikl Biokhim Mikrobiol 46:212–220

    CAS  PubMed  Google Scholar 

  2. Wang R, Sui P, Hou X et al (2017) Cloning and identification of a novel steroid 11α-hydroxylase gene from Absidia coerulea. J Steroid Biochem Mol Biol 171:254–261

    Article  CAS  PubMed  Google Scholar 

  3. García-Fernandez J, Galán B, Felpeto-Santero C et al (2017) Production of 4-Ene-3-ketosteroids in Corynebacterium glutamicum. Catalysts 316:1–12

    Google Scholar 

  4. Felpeto-Santero C, Galán B, Luengo JM et al (2019) Identification and expression of the 11β-steroid hydroxylase from Cochliobolus lunatus in Corynebacterium glutamicum. Microb Biotechnol 12:856–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fernández-Cabezón L, Galán B, García JL (2018) New insights on steroid biotechnology. Front Microbiol 9:958

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lednicer D (2011) Steroid chemistry at a glance. Wiley, New York

    Google Scholar 

  7. Donova MV, Egorova OV (2012) Microbial steroid transformations: current state and prospects. Appl Microbiol Biotechnol 94:1423–1447

    Article  CAS  PubMed  Google Scholar 

  8. Szaleniec M, Wojtkiewicz AM, Bernhardt R et al (2018) Bacterial steroid hydroxylases: enzyme classes, their functions and comparison of their catalytic mechanisms. Appl Microbio Biotechno 102:8153–8171

    Article  CAS  Google Scholar 

  9. Bernhardt R (2006) Cytochromes P450 as versatile biocatalysts. J Biotechnol 124:128–145

    Article  CAS  PubMed  Google Scholar 

  10. Kristan K, Rižner TL (2012) Steroid-transforming enzymes in fungi. J Steroid Biochem Mol Biol 129:79–91

    Article  CAS  PubMed  Google Scholar 

  11. Donova MV (2017) Steroid bioconversions. Methods Mol Biol 1645:1–13

    Article  CAS  PubMed  Google Scholar 

  12. Petrič Š, Hakki T, Bernhardt R et al (2010) Discovery of a steroid 11α-hydroxylase from Rhizopus oryzae and its biotechnological application. J Bacteriol 150:428–437

    Google Scholar 

  13. Fernandes P, Cruz A, Angelova B et al (2003) Microbial conversion of steroid compounds: recent developments. Enzym Microb Technol 32:688–705

    Article  CAS  Google Scholar 

  14. Ikeda M, Nakagawa S (2003) The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol 62:99–109

    Article  CAS  PubMed  Google Scholar 

  15. Felpeto-Santero C, Galán B, García JL (2021) Production of 11α-hydroxysteroids from sterols in a single fermentation step by Mycolicibacterium smegmatis. Microbl Biotechnol 14:2514–2524

    Article  CAS  Google Scholar 

  16. Felpeto-Santero C, Thesis D (2016) Producción de esteroides mediante ingeniería de citocromos. Facultad de Ciencias Químicas, Universidad Complutense de Madrid

    Google Scholar 

  17. Kalinowski J, Bathe B, Bartels D et al (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25

    Article  CAS  PubMed  Google Scholar 

  18. De Lorenzo V (2015) Chassis organism from Corynebacterium glutamicum: the way towards biotechnological domestication of Corynebacteria. Biotechnol J 10:244–245

    Article  PubMed  Google Scholar 

  19. Santamaría RI, Gil JA, Martin JF et al (1985) High-frequency transformation of Brevibacterium lactofermentum protoplasts by plasmid DNA. J Bacteriol 162:463–467

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatriz Galán .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Galán, B., Felpeto-Santero, C., García, J.L. (2023). Production of 11α-Hydroxysteroid Derivatives by Corynebacterium glutamicum Expressing the Rhizopus oryzae Hydroxylating System. In: Barreiro, C., Barredo, JL. (eds) Microbial Steroids. Methods in Molecular Biology, vol 2704. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3385-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3385-4_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3384-7

  • Online ISBN: 978-1-0716-3385-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation