Antibody Selection via Phage Display in Microtiter Plates

  • Protocol
  • First Online:
Phage Display

Abstract

The most common and robust in vitro technology to generate monoclonal human antibodies is phage display. This technology is a widely used and powerful key technology for recombinant antibody selection. Phage display-derived antibodies are used as research tools, in diagnostic assays, and by 2022, 14 phage display-derived therapeutic antibodies were approved. In this review, we describe a fast high-throughput antibody (scFv) selection procedure in 96-well microtiter plates. The given detailed protocol allows the antibody selection (“panning”), screening, and identification of monoclonal antibodies in less than 2 weeks. Furthermore, we describe an on-rate panning approach for the selection of monoclonal antibodies with fast on-rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 234.33
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 299.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Parmley SF, Smith GP (1988) Antibody-selectable filamentous fd phage vectors: affinity purification of target genes. Gene 73:305 –318

    Article  CAS  PubMed  Google Scholar 

  2. Breitling F, Dübel S, Seehaus T, Klewinghaus I, Little M (1991) A surface expression vector for antibody screening. Gene 104:147 –153

    Article  CAS  PubMed  Google Scholar 

  3. Hawlisch H, Müller M, Frank R, Bautsch W, Klos A, Köhl J (2001) Site-specific anti-C3a receptor single-chain antibodies selected by differential panning on cellulose sheets. Anal Biochem 293:142 –145

    Article  CAS  PubMed  Google Scholar 

  4. Moghaddam A, Borgen T, Stacy J, Kausmally L, Simonsen B, Marvik OJ, Brekke OH, Braunagel M (2003) Identification of scFv antibody fragments that specifically recognise the heroin metabolite 6-monoacetylmorphine but not morphine. J Immunol Methods 280:139 –155

    Article  CAS  PubMed  Google Scholar 

  5. Hust M, Maiss E, Jacobsen H-J, Reinard T (2002) The production of a genus-specific recombinant antibody (scFv) using a recombinant potyvirus protease. J Virol Methods 106:225 –233

    Article  CAS  PubMed  Google Scholar 

  6. Schütte M, Thullier P, Pelat T, Wezler X, Rosenstock P, Hinz D, Kirsch MI, Hasenberg M, Frank R, Schirrmann T, Gunzer M, Hust M, Dübel S (2009) Identification of a putative Crf splice variant and generation of recombinant antibodies for the specific detection of Aspergillus fumigatus. PLoS ONE 4:e6625

    Article  PubMed  PubMed Central  Google Scholar 

  7. Keller T, Kalt R, Raab I, Schachner H, Mayrhofer C, Kerjaschki D, Hantusch B (2015) Selection of scFv antibody fragments binding to human blood versus lymphatic endothelial surface antigens by direct cell phage display. PLoS ONE 10:e0127169

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rezaei J, RajabiBazl M, Ebrahimizadeh W, Dehbidi GR, Hosseini H (2016) Selection of single chain antibody fragments for targeting prostate specific membrane antigen: a comparison between cell-based and antigen-based approach. Protein Pept Lett 23:336 –342

    Article  CAS  PubMed  Google Scholar 

  9. Frenzel A, Kügler J, Wilke S, Schirrmann T, Hust M (2014) Construction of human antibody gene libraries and selection of antibodies by phage display. Methods Mol Biol 1060:215 –243

    Article  PubMed  Google Scholar 

  10. Ayriss J, Woods T, Bradbury A, Pavlik P (2007) High-throughput screening of single-chain antibodies using multiplexed flow cytometry. J Proteome Res 6:1072 –1082

    Article  CAS  PubMed  Google Scholar 

  11. Hoet RM, Cohen EH, Kent RB, Rookey K, Schoonbroodt S, Hogan S, Rem L, Frans N, Daukandt M, Pieters H, van Hegelsom R, Neer NC, Nastri HG, Rondon IJ, Leeds JA, Hufton SE, Huang L, Kashin I, Devlin M, Kuang G, Steukers M, Viswanathan M, Nixon AE, Sexton DJ, Hoogenboom HR, Ladner RC (2005) Generation of high-affinity human antibodies by combining donor-derived and synthetic complementarity-determining-region diversity. Nat Biotechnol 23:344 –348

    Article  CAS  PubMed  Google Scholar 

  12. Hust M, Meyer T, Voedisch B, Rülker T, Thie H, El-Ghezal A, Kirsch MI, Schütte M, Helmsing S, Meier D, Schirrmann T, Dübel S (2011) A human scFv antibody generation pipeline for proteome research. J Biotechnol 152:159 –170

    Article  CAS  PubMed  Google Scholar 

  13. Jäger V, Büssow K, Wagner A, Weber S, Hust M, Frenzel A, Schirrmann T (2013) High level transient production of recombinant antibodies and antibody fusion proteins in HEK293 cells. BMC Biotechnol 13:52

    Article  PubMed  PubMed Central  Google Scholar 

  14. Frenzel A, Schirrmann T, Hust M (2016) Phage display-derived human antibodies in clinical development and therapy. MAbs 8:1177 –1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kuhn P, Fühner V, Unkauf T, Moreira GMSG, Frenzel A, Miethe S, Hust M (2016) Recombinant antibodies for diagnostics and therapy against pathogens and toxins generated by phage display. Proteomics Clin Appl 10:922 –948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Russo G, Meier D, Helmsing S, Wenzel E, Oberle F, Frenzel A, Hust M (2018) Parallelized antibody selection in microtiter plates. Methods Mol Biol 1701:273 –284

    Article  CAS  PubMed  Google Scholar 

  17. Trott M, Weiβ S, Antoni S, Koch J, von Briesen H, Hust M, Dietrich U (2014) Functional characterization of two scFv-Fc antibodies from an HIV controller selected on soluble HIV-1 Env complexes: a neutralizing V3- and a trimer-specific gp41 antibody. PLoS ONE 9:e97478

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chan SW, Bye JM, Jackson P, Allain JP (1996) Human recombinant antibodies specific for hepatitis C virus core and envelope E2 peptides from an immune phage display library. J Gen Virol 77(Pt 10):2531–2539

    Article  CAS  PubMed  Google Scholar 

  19. Bertoglio F, Fühner V, Ruschig M et al (2021) A SARS-CoV-2 neutralizing antibody selected from COVID-19 patients binds to the ACE2-RBD interface and is tolerant to most known RBD mutations. Cell Rep 36(4):109433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bertoglio F, Meier D, Langreder N et al (2021) SARS-CoV-2 neutralizing human recombinant antibodies selected from pre-pandemic healthy donors binding at RBD-ACE2 interface. Nat Commun 12:1577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kügler J, Wilke S, Meier D, Tomszak F, Frenzel A, Schirrmann T, Dübel S, Garritsen H, Hock B, Toleikis L, Schütte M, Hust M (2015) Generation and analysis of the improved human HAL9/10 antibody phage display libraries. BMC Biotechnol 15:10

    Article  PubMed  PubMed Central  Google Scholar 

  22. Schofield DJ, Pope AR, Clementel V, Buckell J, Chapple SD, Clarke KF, Conquer JS, Crofts AM, Crowther SRE, Dyson MR, Flack G, Griffin GJ, Hooks Y, Howat WJ, Kolb-Kokocinski A, Kunze S, Martin CD, Maslen GL, Mitchell JN, O’Sullivan M, Perera RL, Roake W, Shadbolt SP, Vincent KJ, Warford A, Wilson WE, **e J, Young JL, McCafferty J (2007) Application of phage display to high throughput antibody generation and characterization. Genome Biol 8:R254

    Article  PubMed  PubMed Central  Google Scholar 

  23. Glanville J, Zhai W, Berka J, Telman D, Huerta G, Mehta GR, Ni I, Mei L, Sundar PD, Day GMR, Cox D, Rajpal A, Pons J (2009) Precise determination of the diversity of a combinatorial antibody library gives insight into the human immunoglobulin repertoire. Proc Natl Acad Sci USA 106:20216 –20221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. de Wildt RM, Mundy CR, Gorick BD, Tomlinson IM (2000) Antibody arrays for high-throughput screening of antibody-antigen interactions. Nat Biotechnol 18:989 –994

    Article  PubMed  Google Scholar 

  25. Rothe C, Urlinger S, Löhning C et al (2008) The human combinatorial antibody library HuCAL GOLD combines diversification of all six CDRs according to the natural immune system with a novel display method for efficient selection of high-affinity antibodies. J Mol Biol 376(4):1182–1200. Epub 2007 Dec 15

    Article  CAS  PubMed  Google Scholar 

  26. Prassler J, Thiel S, Pracht C et al (2011) HuCAL PLATINUM, a synthetic Fab library optimized for sequence diversity and superior performance in mammalian expression systems. J Mol Biol 413(1):261–278. Epub 2011 Aug 12

    Article  CAS  PubMed  Google Scholar 

  27. Tiller T, Schuster I, Deppe D et al (2013) A fully synthetic human Fab antibody library based on fixed VH/VL framework pairings with favorable biophysical properties. MAbs 5(3):445–470. Epub 2013 Apr 9

    Article  PubMed  PubMed Central  Google Scholar 

  28. Schirrmann T, Hust M (2010) Construction of human antibody gene libraries and selection of antibodies by phage display. Methods Mol Biol 651:177 –209

    Article  CAS  PubMed  Google Scholar 

  29. Kirsch M, Hülseweh B, Nacke C, Rülker T, Schirrmann T, Marschall H-J, Hust M, Dübel S (2008) Development of human antibody fragments using antibody phage display for the detection and diagnosis of Venezuelan equine encephalitis virus (VEEV). BMC Biotechnol 8:66

    Article  PubMed  PubMed Central  Google Scholar 

  30. Goletz S, Christensen PA, Kristensen P, Blohm D, Tomlinson I, Winter G, Karsten U (2002) Selection of large diversities of antiidiotypic antibody fragments by phage display. J Mol Biol 315:1087 –1097

    Article  CAS  PubMed  Google Scholar 

  31. Finnern R, Pedrollo E, Fisch I, Wieslander J, Marks JD, Lockwood CM, Ouwehand WH (1997) Human autoimmune anti-proteinase 3 scFv from a phage display library. Clin Exp Immunol 107:269 –281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hust M, Steinwand M, Al-Halabi L, Helmsing S, Schirrmann T, Dübel S (2009) Improved microtitre plate production of single chain Fv fragments in Escherichia coli. New Biotechnol 25:424 –428

    Article  CAS  Google Scholar 

  33. Goffinet M, Chinestra P, Lajoie-Mazenc I, Medale-Giamarchi C, Favre G, Faye J-C (2008) Identification of a GTP-bound Rho specific scFv molecular sensor by phage display selection. BMC Biotechnol 8:34

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lillo AM, Ayriss JE, Shou Y, Graves SW, Bradbury ARM (2011) Development of phage-based single chain Fv antibody reagents for detection of Yersinia pestis. PLoS ONE 6:e27756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This protocol is an updated and revised version of [16, 28].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Hust .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Steinke, S. et al. (2023). Antibody Selection via Phage Display in Microtiter Plates . In: Hust, M., Lim, T.S. (eds) Phage Display. Methods in Molecular Biology, vol 2702. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3381-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3381-6_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3380-9

  • Online ISBN: 978-1-0716-3381-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation