Visualizing Molecular Dynamics by High-Speed Atomic Force Microscopy

  • Protocol
  • First Online:
Single Molecule Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2694))

  • 995 Accesses

Abstract

Dynamic processes and structural changes of biological molecules are essential to life. While conventional atomic force microscopy (AFM) is able to visualize molecules and supramolecular assemblies at sub-nanometer resolution, it cannot capture dynamics because of its low imaging rate. The introduction of high-speed atomic force microscopy (HS-AFM) solved this problem by providing a large increase in imaging velocity. Using HS-AFM, one is able to visualize dynamic molecular events with high spatiotemporal resolution under near-to physiological conditions. This approach opened new windows as finally dynamics of biomolecules at sub-nanometer resolution could be studied. Here we describe the working principles and an operation protocol for HS-AFM imaging and characterization of biological samples in liquid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 169.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933. https://doi.org/10.1201/9781420075250

    Article  ADS  Google Scholar 

  2. Schoenenberger CA, Hoh JH (1994) Slow cellular dynamics in MDCK and R5 cells monitored by time-lapse atomic force microscopy. Biophys J 67:929–936. https://doi.org/10.1016/S0006-3495(94)80556-9

    Article  Google Scholar 

  3. le Grimellec C, Lesniewska E, Giocondi MC et al (1998) Imaging of the surface of living cells by low-force contact-mode atomic force microscopy. Biophys J 75:695–703. https://doi.org/10.1016/S0006-3495(98)77559-9

    Article  Google Scholar 

  4. Dufrêne YF (2001) Application of atomic force microscopy to microbial surfaces: from reconstituted cell surface layers to living cells. Micron 32:153–165. https://doi.org/10.1016/S0968-4328(99)00106-7

    Article  Google Scholar 

  5. Baclayon M, Wuite GJL, Roos WH (2010) Imaging and manipulation of single viruses by atomic force microscopy. Soft Matter 6:5273–5285. https://doi.org/10.1039/b923992h

    Article  ADS  Google Scholar 

  6. Shibata-Seki T, Masai J, Ogawa Y et al (1998) Application of atomic force microscopy to protein anatomy: Imaging of supramolecular structures of self-assemblies formed from synthetic peptides. Appl Phys A Mater Sci Process 66:625–629. https://doi.org/10.1007/s003390051212

    Article  Google Scholar 

  7. Mou J, Yang J, Shao Z (1995) Atomic force microscopy of cholera toxin B-oligomers bound to bilayers of biologically relevant lipids. J Mol Biol 248:507–512. https://doi.org/10.1006/jmbi.1995.0238

    Article  Google Scholar 

  8. Fotiadis D, Scheuring S, Müller SA et al (2002) Imaging and manipulation of biological structures with the AFM. Micron 33:385–397. https://doi.org/10.1016/S0968-4328(01)00026-9

    Article  Google Scholar 

  9. Baclayon M, Roos WH, Wuite GJL (2010) Sampling protein form and function with the atomic force microscope. Mol Cell Proteomics 9:1678–1688. https://doi.org/10.1074/MCP.R110.001461

    Article  Google Scholar 

  10. Walters DA, Cleveland JP, Thomson NH et al (1996) Short cantilevers for atomic force microscopy. Rev Sci Instrum 67:3583–3590. https://doi.org/10.1063/1.1147177

    Article  ADS  Google Scholar 

  11. Ando T, Kodera N, Takai E et al (2001) A high-speed atomic force microscope for studying biological macromolecules. Proc Natl Acad Sci U S A 98:12468–12472. https://doi.org/10.1073/pnas.211400898

    Article  ADS  Google Scholar 

  12. Schäffer TE, Cleveland JP, Ohnesorge F et al (1996) Studies of vibrating atomic force microscope cantilevers in liquid. J Appl Phys 80:3622–3627. https://doi.org/10.1063/1.363308

    Article  ADS  Google Scholar 

  13. Viani MB, Schäffer TE, Paloczi GT et al (1999) Fast imaging and fast force spectroscopy of single biopolymers with a new atomic force microscope designed for small cantilevers. Rev Sci Instrum 70:4300–4303. https://doi.org/10.1063/1.1150069

    Article  ADS  Google Scholar 

  14. Viani MB, Pietrasanta LI, Thompson JB et al (2000) Probing protein–protein interactions in real time. Nat Struct Biol 7:644–647. https://doi.org/10.1038/77936

    Article  Google Scholar 

  15. Ando T, Kodera N, Maruyama D et al (2002) A high-speed atomic force microscope for studying biological macromolecules in action. Jpn J Appl Phys, Part 1 41:4851–4856. https://doi.org/10.1143/jjap.41.4851

    Article  Google Scholar 

  16. Kodera N, Yamashita H, Ando T (2005) Active dam** of the scanner for high-speed atomic force microscopy. Rev Sci Instrum 76:1–6. https://doi.org/10.1063/1.1903123

    Article  Google Scholar 

  17. Kodera N, Sakashita M, Ando T (2006) Dynamic proportional-integral-differential controller for high-speed atomic force microscopy. Rev Sci Instrum 77:083704. https://doi.org/10.1063/1.2336113

    Article  ADS  Google Scholar 

  18. Ando T, Uchihashi T, Fukuma T (2008) High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes. Prog Surf Sci 83:337–437. https://doi.org/10.1016/j.progsurf.2008.09.001

    Article  ADS  Google Scholar 

  19. Lee AJ, Szymonik M, Hobbs JK, Wälti C (2015) Tuning the translational freedom of DNA for high speed AFM. Nano Res 8:1811–1821. https://doi.org/10.1007/s12274-014-0681-y

    Article  Google Scholar 

  20. Nishide G, Lim K, Mohamed MS et al (2021) High-speed atomic force microscopy reveals spatiotemporal dynamics of histone protein H2A involution by DNA inchworming. J Phys Chem Lett 12:3837–3846. https://doi.org/10.1021/acs.jpclett.1c00697

    Article  Google Scholar 

  21. Sanchez H, Suzuki Y, Yokokawa M et al (2011) Protein-DNA interactions in high speed AFM: Single molecule diffusion analysis of human RAD54. Integer Biol 3:1127–1134. https://doi.org/10.1039/c1ib00039j

  22. Brouns T, de Keersmaecker H, Konrad SF et al (2018) Free energy landscape and dynamics of supercoiled DNA by high-speed atomic force microscopy. ACS Nano 12:11907–11916. https://doi.org/10.1021/acsnano.8b06994

    Article  Google Scholar 

  23. Miyagi A, Ando T, Lyubchenko YL (2011) Dynamics of nucleosomes assessed with time-lapse high-speed atomic force microscopy. Biochemistry 50:7901–7908. https://doi.org/10.1021/bi200946z

    Article  Google Scholar 

  24. Casuso I, Khao J, Chami M et al (2012) Characterization of the motion of membrane proteins using high-speed atomic force microscopy. Nat Nanotechnol 7:525–529. https://doi.org/10.1038/nnano.2012.109

    Article  ADS  Google Scholar 

  25. Mori T, Sugiyama S, Byrne M et al (2018) Revealing circadian mechanisms of integration and resilience by visualizing clock proteins working in real time. Nat Commun 9:3245. https://doi.org/10.1038/s41467-018-05438-4

    Article  ADS  Google Scholar 

  26. Kodera N, Noshiro D, Dora SK et al (2021) Structural and dynamics analysis of intrinsically disordered proteins by high-speed atomic force microscopy. Nat Nanotechnol 16:181–189. https://doi.org/10.1038/s41565-020-00798-9

    Article  ADS  Google Scholar 

  27. Kodera N, Yamamoto D, Ishikawa R, Ando T (2010) Video imaging of walking myosin v by high-speed atomic force microscopy. Nature 468:72–76. https://doi.org/10.1038/nature09450

    Article  ADS  Google Scholar 

  28. Maity S, Caillat C, Miguet N et al (2019) VPS4 triggers constriction and cleavage of ESCRT-III helical filaments. Sci Adv 5:eaau7198. https://doi.org/10.1126/sciadv.aau7198

    Article  ADS  Google Scholar 

  29. Fukuda S, Ando T (2021) Faster high-speed atomic force microscopy for imaging of biomolecular processes. Rev Sci Instrum 92:033705. https://doi.org/10.1063/5.0032948

    Article  ADS  Google Scholar 

  30. Heath GR, Scheuring S (2018) High-speed AFM height spectroscopy reveals μs-dynamics of unlabeled biomolecules. Nat Commun 9:4983. https://doi.org/10.1038/s41467-018-07512-3

    Article  ADS  Google Scholar 

  31. Rico F, Gonzalez L, Casuso I et al (2013) High-speed force spectroscopy unfolds titin at the velocity of molecular dynamics simulations. Science (1979) 342:741–743. https://doi.org/10.1126/science.1239764

    Article  Google Scholar 

  32. Rico F, Russek A, González L et al (2019) Heterogeneous and rate-dependent streptavidin–biotin unbinding revealed by high-speed force spectroscopy and atomistic simulations. Proc Natl Acad Sci U S A 116:6594–6601. https://doi.org/10.1073/pnas.1816909116

    Article  ADS  Google Scholar 

  33. Alqabandi M, de Franceschi N, Maity S et al (2021) The ESCRT-III isoforms CHMP2A and CHMP2B display different effects on membranes upon polymerization. BMC Biol 19:1–18. https://doi.org/10.1186/s12915-021-00983-9

    Article  Google Scholar 

  34. Lin YC, Guo YR, Miyagi A et al (2019) Force-induced conformational changes in PIEZO1. Nature 573:230–234. https://doi.org/10.1038/s41586-019-1499-2

    Article  ADS  Google Scholar 

  35. Azad K, Guilligay D, Boscheron C et al (2023) Structural basis of CHMP2A-CHMP3 ESCRT-III polymer assembly and membrane cleavage. Nat Struct Mol Biol 30:81–90. https://doi.org/10.1038/s41594-022-00867-8

    Article  Google Scholar 

  36. Valbuena A, Maity S, Mateu MG, Roos WH (2020) Visualization of single molecules building a viral capsid protein lattice through stochastic pathways. ACS Nano 14:8724–8734. https://doi.org/10.1021/acsnano.0c03207

    Article  Google Scholar 

  37. Buzón P, Maity S, Christodoulis P et al (2021) Virus self-assembly proceeds through contact-rich energy minima. Sci Adv 7:eabg0811. https://doi.org/10.1126/sciadv.abg0811

    Article  ADS  Google Scholar 

  38. Maity S, Ottelé J, Santiago GM et al (2020) Caught in the act: mechanistic insight into supramolecular polymerization-driven self-replication from real-time visualization. J Am Chem Soc 142:13709–13717. https://doi.org/10.1021/jacs.0c02635

    Article  Google Scholar 

  39. Maity S, Trinco G, Buzón P et al (2022) High-speed atomic force microscopy reveals a three-state elevator mechanism in the citrate transporter CitS. Proc Natl Acad Sci U S A 119:e2113927119. https://doi.org/10.1073/pnas.2113927119

    Article  Google Scholar 

  40. Shukla R, Lavore F, Maity S et al (2022) Teixobactin kills bacteria by a two-pronged attack on the cell envelope. Nature 608:390–396. https://doi.org/10.1038/s41586-022-05019-y

    Article  ADS  Google Scholar 

Download references

Acknowledgments

WHR acknowledges support from the EU H2020-INFRAIA infrastructure grant “MOSBRI” (101004806) and through the Dieptestrategie funding of the Zernike Institute National Research Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wouter H. Roos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

van Ewijk, C., Maity, S., Roos, W.H. (2024). Visualizing Molecular Dynamics by High-Speed Atomic Force Microscopy. In: Heller, I., Dulin, D., Peterman, E.J. (eds) Single Molecule Analysis . Methods in Molecular Biology, vol 2694. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3377-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3377-9_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3376-2

  • Online ISBN: 978-1-0716-3377-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation