Poly-Histidine-Tagged Protein Purification Using Immobilized Metal Affinity Chromatography (IMAC)

  • Protocol
  • First Online:
Protein Chromatography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2699))

  • 1208 Accesses

Abstract

His-tagging is the most widespread and versatile strategy used to purify recombinant proteins for biochemical and structural studies. Recombinant DNA methods are first used to engineer the addition of a short tract of poly-histidine tag (His-tag) to the N-terminus or C-terminus of a target protein. The His-tag is then exploited to enable purification of the “tagged” protein by immobilized metal affinity chromatography (IMAC). In this chapter, we describe efficient procedures for the isolation of highly purified His-tagged target proteins from an Escherichia coli host using IMAC in a bind-wash-elute strategy that can be performed under both native and denaturing conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Spain)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 169.99
Price includes VAT (Spain)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 207.99
Price includes VAT (Spain)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Porath J, Carlsson J, Olsson I et al (1975) Metal chelate affinity chromatography, a new approach to protein fractionation. Nature 258:598–599

    Article  CAS  PubMed  Google Scholar 

  2. Li M, Su ZG, Janson JC (2004) In vitro protein refolding by chromatographic procedures. Protein Expr Purif 33:1–10

    Article  PubMed  Google Scholar 

  3. Yamaguchi H, Miyazaki M (2014) Refolding techniques for recovering biologically active recombinant proteins from inclusion bodies. Biomol Ther 4:235–251

    Google Scholar 

  4. López-Laguna H, Voltà-Durán E, Parladé E et al (2022) Insights on the emerging biotechnology of histidine-rich peptides. Biotechnol Adv 54:107817

    Article  PubMed  Google Scholar 

  5. Singh M, Sori H, Ahuja R et al (2020) Effect of N-terminal poly histidine-tag on immunogenicity of Streptococcus pneumoniae surface protein SP0845. Int J Biol Macromol 163:1240–1248

    Article  CAS  PubMed  Google Scholar 

  6. Kreisig T, Prasse AA, Zscharnack K et al (2014) His-tag protein monitoring by a fast mix-and-measure immunoassay. Sci Rep 4:5613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Raducanu VS, Isaioglou I, Raducanu DV et al (2020) Simplified detection of polyhistidine-tagged proteins in gels and membranes using a UV-excitable dye and a multiple chelator head pair. J Biol Chem 295:12214–12223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hochuli E, Dobeli H, Schacher A (1987) New metal chelate adsorbent selective for proteins and peptides containing neighbouring histidine residues. J Chromatogr 411:177–184

    Article  CAS  PubMed  Google Scholar 

  9. Terpe K (2003) Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 60:523–533

    Article  CAS  PubMed  Google Scholar 

  10. Zhang C, Fredericks D, Longford D et al (2015) Changed loading conditions and lysate composition improve the purity of tagged recombinant proteins with tacn-based IMAC adsorbents. Biotechnol J 10:480–489

    Article  CAS  PubMed  Google Scholar 

  11. Bo C, Wang C, Wei Y (2016) Novel bis(5-methyltetrazolium)amine ligand-bonded stationary phase with reduced leakage of metal ions in immobilized metal affinity chromatography of proteins. Anal Bioanal Chem 408:7595–7605

    Article  CAS  PubMed  Google Scholar 

  12. Mooney JT, Fredericks DP, Zhang C et al (2014) Purification of a recombinant human growth hormone by an integrated IMAC procedure. Protein Expr Purif 94:85–94

    Article  CAS  PubMed  Google Scholar 

  13. Peterka M, Jarc M, Banjac M et al (2006) Characterisation of metal–chelate methacrylate monoliths. J Chromatogr A 1109:80–85

    Article  CAS  PubMed  Google Scholar 

  14. Riguero V, Clifford R, Dawley M et al (2020) Immobilized metal affinity chromatography optimization for poly-histidine tagged proteins. J Chromatogr A 1629:461505

    Article  CAS  PubMed  Google Scholar 

  15. Freitas AI, Domingues L, Aguiar TQ (2022) Tag-mediated single-step purification and immobilization of recombinant proteins toward protein-engineered advanced materials. J Adv Res 36:249–264

    Article  CAS  PubMed  Google Scholar 

  16. Freitas AI, Domingues L, Aguiar TQ (2022) Bare silica as an alternative matrix for affinity purification/immobilization of His-tagged proteins. Sep Purif Technol 286:120448

    Article  CAS  Google Scholar 

  17. Loughran ST, Loughran NB, Ryan BJ et al (2006) Modified His-tag fusion vector for enhanced protein purification by immobilized metal affinity chromatography. Anal Biochem 355:148–150

    Article  CAS  PubMed  Google Scholar 

  18. Noirclerc-Savoye M, Flayhan A, Pereira C et al (2015) Tail proteins of phage T5: investigation of the effect of the His6-tag position, from expression to crystallisation. Protein Expr Purif 109:70–78

    Article  CAS  PubMed  Google Scholar 

  19. Mason AB, He QY, Halbrooks PJ et al (2002) Differential effect of a his tag at the N- and C-termini: functional studies with recombinant human serum transferrin†. Biochemistry 41:9448–9454

    Article  CAS  PubMed  Google Scholar 

  20. Song H, Park EJ, Shin Y-H et al (2012) Effect of polyhistidine-tagging site on the stability of recombinant alginate lyase from Streptomyces sp. ALG-5. J Pharm Investig 42:15–19

    Article  CAS  Google Scholar 

  21. Kutyshenko VP, Mikoulinskaia GV, Chernyshov SV et al (2019) Effect of C-terminal His-tag and purification routine on the activity and structure of the metalloenzyme, l-alanyl-d-glutamate peptidase of the bacteriophage T5. Int J Biol Macromol 124:810–818

    Article  CAS  PubMed  Google Scholar 

  22. Costa S, Almeida A, Castro A et al (2014) Fusion tags for protein solubility, purification, and immunogenicity in Escherichia coli: the novel Fh8 system. Front Microbiol 5:63

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cline SD, Saleem S, Daines DA (2012) Regulation of the vapBC-1 toxin-antitoxin locus in nontypeable Haemophilus influenzae. PLoS One 7:e32199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mergulhão FJM, Summers DK, Monteiro GA (2005) Recombinant protein secretion in Escherichia coli. Biotechnol Adv 23:177–202

    Article  PubMed  Google Scholar 

  25. Liu Z, Bartlow P, Varakala R et al (2009) Use of proteomics for design of a tailored host cell for highly efficient protein purification. J Chromatogr A 1216:2433–2438

    Article  CAS  PubMed  Google Scholar 

  26. Villarejo MR, Zabin I (1974) Beta-galactosidase from termination and deletion mutant strains. J Bacteriol 120:466–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Prinz WA, Åslund F, Holmgren A et al (1997) The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm. J Biol Chem 272:15661–15667

    Article  CAS  PubMed  Google Scholar 

  28. Angov E (2011) Codon usage: nature’s roadmap to expression and folding of proteins. Biotechnol J 6:650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Grosjean H, Fiers W (1982) Preferential codon usage in prokaryotic genes: the optimal codon-anticodon interaction energy and the selective codon usage in efficiently expressed genes. Gene 18:199–209

    Article  CAS  PubMed  Google Scholar 

  30. Sorensen MA, Kurland CG, Pedersen S (1989) Codon usage determines translation rate in Escherichia coli. J Mol Biol 207:365–377

    Article  CAS  PubMed  Google Scholar 

  31. Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5:172

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ren G, Gong X, Wang B et al (2015) Affinity ionic liquids for the rapid liquid–liquid extraction purification of hexahistidine tagged proteins. Sep Purif Technol 146:114–120

    Article  CAS  Google Scholar 

  33. Cass B, Pham PL, Kamen A et al (2005) Purification of recombinant proteins from mammalian cell culture using a generic double-affinity chromatography scheme. Protein Expr Purif 40:77–85

    Article  CAS  PubMed  Google Scholar 

  34. Soto-Rodríguez J, Coyle BL, Samuelson A et al (2017) Affinity purification of Car9-tagged proteins on silica matrices: optimization of a rapid and inexpensive protein purification technology. Protein Expr Purif 135:70–77

    Article  PubMed  Google Scholar 

  35. Liao Y, Cheng Y, Li Q (2007) Preparation of nitrilotriacetic acid/Co2+-linked, silica/boron-coated magnetite nanoparticles for purification of 6× histidine-tagged proteins. J Chromatogr A 1143:65–71

    Article  CAS  PubMed  Google Scholar 

  36. Li P, Li L, Zhao Y et al (2016) Selective binding and magnetic separation of histidine-tagged proteins using Fe3O4/Cu-apatite nanoparticles. J Inorg Biochem 156:49–54

    Article  CAS  PubMed  Google Scholar 

  37. Yao S, Yan X, Zhao Y et al (2014) Selective binding and magnetic separation of histidine-tagged proteins using Ni2+-decorated Fe3O4/hydroxyapatite composite nanoparticles. Mater Lett 126:97–100

    Article  CAS  Google Scholar 

  38. Zhang L, Zhu X, Jiao D et al (2013) Efficient purification of His-tagged protein by superparamagnetic Fe3O4/Au–ANTA–Co2+ nanoparticles. Mater Sci Eng C 33:1989–1992

    Article  CAS  Google Scholar 

  39. Fraga García P, Freiherr Von Roman M, Reinlein S et al (2014) Impact of nanoparticle aggregation on protein recovery through a pentadentate chelate ligand on magnetic carriers. ACS Appl Mater Interfaces 6:13607–13616

    Article  PubMed  Google Scholar 

  40. Oślizło A, Miernikiewicz P, Piotrowicz A et al (2011) Purification of phage display-modified bacteriophage T4 by affinity chromatography. BMC Biotechnol 11:59

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ceglarek I, Piotrowicz A, Lecion D et al (2013) A novel approach for separating bacteriophages from other bacteriophages using affinity chromatography and phage display. Sci Rep 3:3220

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lai Y-T, Chang Y-Y, Hu L et al (2015) Rapid labeling of intracellular His-tagged proteins in living cells. Proc Natl Acad Sci 112:201419598

    Article  Google Scholar 

  43. Murata A, Arai S, Yoon SI et al (2010) Construction of a “turn-on” fluorescent probe system for His-tagged proteins. Bioorg Med Chem Lett 20:6905–6908

    Article  CAS  PubMed  Google Scholar 

  44. Badar A, DeFreitas S, McDonnell JM et al (2011) Recombinant complement receptor 2 radiolabeled with [99mTc(CO)3]+: a potential new radiopharmaceutical for imaging activated complement. PLoS One 6:e18275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Waibel R, Alberto R, Willuda J et al (1999) Stable one-step technetium-99m labeling of His-tagged recombinant proteins with a novel Tc(I)-carbonyl complex. Nat Biotechnol 17:897–901

    Article  CAS  PubMed  Google Scholar 

  46. Shimada J, Maruyama T, Hosogi T et al (2008) Conjugation of DNA with protein using His-tag chemistry and its application to the aptamer-based detection system. Biotechnol Lett 30:2001–2006

    Article  CAS  PubMed  Google Scholar 

  47. Tsuji S, Tanaka T, Hirabayashi N et al (2009) RNA aptamer binding to polyhistidine-tag. Biochem Biophys Res Commun 386:227–231

    Article  CAS  PubMed  Google Scholar 

  48. Ghiotto F, Fais F, Bruno S (2010) BH3-only proteins: the death-puppeteer’s wires. Cytometry A 77A:11–21

    CAS  Google Scholar 

  49. Holmberg M, Hansen TS, Lind JU et al (2012) Increased adsorption of histidine-tagged proteins onto tissue culture polystyrene. Colloids Surf B Biointerfaces 92:286–292

    Article  CAS  PubMed  Google Scholar 

  50. Kimple ME, Sondek J (2004) Overview of affinity tags for protein purification. Curr Protoc Protein Sci 36:9.9.1–9.9.19

    Article  Google Scholar 

  51. Xu CG, Fan XJ, Fu YJ et al (2008) Effect of location of the His-tag on the production of soluble and functional Buthus martensii Karsch insect toxin. Protein Expr Purif 59:103–109

    Article  CAS  PubMed  Google Scholar 

  52. Grisshammer R, White JF, Trinh LB et al (2005) Large-scale expression and purification of a G-protein-coupled receptor for structure determination—an overview. J Struct Funct Genom 6:159–163

    Article  CAS  Google Scholar 

  53. Yeliseev AA, Wong KK, Soubias O et al (2005) Expression of human peripheral cannabinoid receptor for structural studies. Protein Sci 14:2638–2653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chaga GS (2001) Twenty-five years of immobilized metal ion affinity chromatography: past, present and future. J Biochem Biophys Methods 49:313–334

    Article  CAS  PubMed  Google Scholar 

  55. Manjasetty BA, Turnbull AP, Panjikar S et al (2008) Automated technologies and novel techniques to accelerate protein crystallography for structural genomics. Proteomics 8:612–625

    Article  CAS  PubMed  Google Scholar 

  56. Magnusdottir A, Johansson I, Dahlgren LG et al (2009) Enabling IMAC purification of low abundance recombinant proteins from E. coli lysates. Nat Methods 6:477–478

    Article  CAS  PubMed  Google Scholar 

  57. Duvaud S, Gabella C, Lisacek F et al (2021) Expasy, the Swiss Bioinformatics Resource Portal, as designed by its users. Nucleic Acids Res 49:W216–W227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Grossman TH, Kawasaki ES, Punreddy SR et al (1998) Spontaneous cAMP-dependent derepression of gene expression in stationary phase plays a role in recombinant expression instability. Gene 209:95–103

    Article  CAS  PubMed  Google Scholar 

  59. Hunt GR, Stieber RW (1986) Inoculum development. In: Demain AL, Solomon NA (eds) Manual of industrial microbiology and biotechnology. ASM, Washington, DC, pp 32–40

    Google Scholar 

  60. Studier FW (2005) Protein production by auto-induction in high density shaking cultures. Protein Expr Purif 41:207–234

    Article  CAS  PubMed  Google Scholar 

  61. Grodberg J, Dunn JJ (1988) OmpT encodes the Escherichia coli outer membrane protease that cleaves T7 RNA polymerase during purification. J Bacteriol 170:1245–1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Karyolaimos A, Ampah-Korsah H, Hillenaar T et al (2019) Enhancing recombinant protein yields in the E. coli periplasm by combining signal peptide and production rate screening. Front Microbiol 10:1511

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinéad T. Loughran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Loughran, S.T., Bree, R.T., Walls, D. (2023). Poly-Histidine-Tagged Protein Purification Using Immobilized Metal Affinity Chromatography (IMAC). In: Loughran, S.T., Milne, J.J. (eds) Protein Chromatography. Methods in Molecular Biology, vol 2699. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3362-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3362-5_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3361-8

  • Online ISBN: 978-1-0716-3362-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation