Methods to Activate the NLRP3 Inflammasome

  • Protocol
  • First Online:
NLR Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2696))

Abstract

The inflammasome-nucleating cytoplasmic sensor protein NLRP3 (NACHT-, LRR, and PYD domains-containing protein 3, also known as NOD-like receptor pyrin domain-containing 3, NALP3, or cryopyrin) is triggered by a broad spectrum of sterile endogenous danger signals and environmental irritants. Upon activation, NLRP3 engages the adapter protein ASC that in turn recruits the third inflammasome component, the protease caspase-1. Subsequent caspase-1 activation leads to its auto-processing and maturation of the leaderless IL-1 family cytokines IL-1β and IL-18 as well as cleavage of the pore-forming protein Gasdermin D (GSDMD). GSDMD plasma membrane pores, formed by its N-terminus, facilitate IL-1 release and, typically, subsequent cell lysis (pyroptosis). This protocol explains standard methods, which are routinely used in our laboratory to study NLRP3 inflammasome biology in vitro. It includes experimental approaches using primary murine bone marrow-derived macrophages (BMDMs) and bone marrow-derived dendritic cells (BMDCs), human peripheral blood mononuclear cells (PBMCs), as well as inflammasome-competent cell lines (HoxB8 and THP-1 cells). The protocol covers the use of a broad spectrum of established NLRP3 activators and outlines the use of common inhibitors blocking NLRP3 itself or its upstream triggering events. We also provide guidelines for experimental set-up and crucial experimental controls to investigate NLRP3 inflammasome signaling or study new activators and inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Guo H, Callaway JB, Ting JP-Y (2015) Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med 21:677–687. https://doi.org/10.1038/nm.3893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gross O (2012) Measuring the inflammasome. Methods Mol Biol 844:199–222. https://doi.org/10.1007/978-1-61779-527-5_15

    Article  CAS  PubMed  Google Scholar 

  3. Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10:417–426. https://doi.org/10.1016/s1097-2765(02)00599-3

    Article  CAS  PubMed  Google Scholar 

  4. Bürckstümmer T, Baumann C, Blüml S et al (2009) An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat Immunol 10:266–272. https://doi.org/10.1038/ni.1702

    Article  CAS  PubMed  Google Scholar 

  5. Fernandes-Alnemri T, Yu J-W, Datta P et al (2009) AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458:509–513. https://doi.org/10.1038/nature07710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hornung V, Ablasser A, Charrel-Dennis M et al (2009) AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458:514–518. https://doi.org/10.1038/nature07725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Roberts TL, Idris A, Dunn JA et al (2009) HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science 323:1057–1060. https://doi.org/10.1126/science.1169841

    Article  CAS  PubMed  Google Scholar 

  8. Poeck H, Bscheider M, Gross O et al (2010) Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 1 beta production. Nat Immunol 11:63–69. https://doi.org/10.1038/ni.1824

    Article  CAS  PubMed  Google Scholar 

  9. Xu H, Yang J, Gao W et al (2014) Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature 513:237–241. https://doi.org/10.1038/nature13449

    Article  CAS  PubMed  Google Scholar 

  10. Miao EA, Alpuche-Aranda CM, Dors M et al (2006) Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf. Nat Immunol 7:569–575. https://doi.org/10.1038/ni1344

    Article  CAS  PubMed  Google Scholar 

  11. Franchi L, Amer A, Body-Malapel M et al (2006) Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1beta in salmonella-infected macrophages. Nat Immunol 7:576–582. https://doi.org/10.1038/ni1346

    Article  CAS  PubMed  Google Scholar 

  12. Miao EA, Mao DP, Yudkovsky N et al (2010) Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc Natl Acad Sci USA 107:3076–3080. https://doi.org/10.1073/pnas.0913087107

    Article  PubMed  PubMed Central  Google Scholar 

  13. Boyden ED, Dietrich WF (2006) Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nat Genet 38:240–244. https://doi.org/10.1038/ng1724

    Article  CAS  PubMed  Google Scholar 

  14. Xu H, Shi J, Gao H et al (2019) The N-end rule ubiquitin ligase UBR2 mediates NLRP1B inflammasome activation by anthrax lethal toxin. EMBO J 38:e101996. https://doi.org/10.15252/embj.2019101996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sandstrom A, Mitchell PS, Goers L et al (2019) Functional degradation: a mechanism of NLRP1 inflammasome activation by diverse pathogen enzymes. Science. https://doi.org/10.1126/science.aau1330

  16. Chui AJ, Okondo MC, Rao SD et al (2019) N-terminal degradation activates the NLRP1B inflammasome. Science 364:82–85. https://doi.org/10.1126/science.aau1208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bauernfried S, Scherr MJ, Pichlmair A et al (2021) Human NLRP1 is a sensor for double-stranded RNA. Science. https://doi.org/10.1126/science.abd0811

  18. Huang M, Zhang X, Toh GA et al (2021) Structural and biochemical mechanisms of NLRP1 inhibition by DPP9. Nature 592:773–777. https://doi.org/10.1038/s41586-021-03320-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Swanson KV, Deng M, Ting JP-Y (2019) The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol 19:477–489. https://doi.org/10.1038/s41577-019-0165-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Muñoz-Planillo R, Kuffa P, Martínez-Colón G et al (2013) K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38:1142–1153. https://doi.org/10.1016/j.immuni.2013.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rathinam VAK, Vanaja SK, Waggoner L et al (2012) TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria. Cell 150:606–619. https://doi.org/10.1016/j.cell.2012.07.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hayward JA, Mathur A, Ngo C, Man SM (2018) Cytosolic recognition of microbes and pathogens: inflammasomes in action. Microbiol Mol Biol Rev. https://doi.org/10.1128/MMBR.00015-18

  23. Bauernfeind FG, Horvath G, Stutz A et al (2009) Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol 183:787–791. https://doi.org/10.4049/jimmunol.0901363

    Article  CAS  PubMed  Google Scholar 

  24. He Y, Zeng MY, Yang D et al (2016) NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux. Nature 530:354–357. https://doi.org/10.1038/nature16959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sharif H, Wang L, Wang WL et al (2019) Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome. Nature 570:338–343. https://doi.org/10.1038/s41586-019-1295-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hu Z, Zhou Q, Zhang C et al (2015) Structural and biochemical basis for induced self-propagation of NLRC4. Science 350:399–404. https://doi.org/10.1126/science.aac5489

    Article  CAS  PubMed  Google Scholar 

  27. Zhang L, Chen S, Ruan J et al (2015) Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization. Science 350:404–409. https://doi.org/10.1126/science.aac5789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Broz P (2015) Inflammasome assembly: the wheels are turning. Cell Res 25:1277–1278. https://doi.org/10.1038/cr.2015.137

    Article  PubMed  PubMed Central  Google Scholar 

  29. Andreeva L, David L, Rawson S et al (2021) NLRP3 cages revealed by full-length mouse NLRP3 structure control pathway activation. Cell 184:6299–6312.e22. https://doi.org/10.1016/j.cell.2021.11.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. He W-T, Wan H, Hu L et al (2015) Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res 25:1285–1298. https://doi.org/10.1038/cr.2015.139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kayagaki N, Stowe IB, Lee BL et al (2015) Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526:666–671. https://doi.org/10.1038/nature15541

    Article  CAS  PubMed  Google Scholar 

  32. Shi J, Zhao Y, Wang K et al (2015) Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526:660–665. https://doi.org/10.1038/nature15514

    Article  CAS  PubMed  Google Scholar 

  33. Kayagaki N, Kornfeld OS, Lee BL et al (2021) NINJ1 mediates plasma membrane rupture during lytic cell death. Nature 591:131–136. https://doi.org/10.1038/s41586-021-03218-7

    Article  CAS  PubMed  Google Scholar 

  34. Gross O, Poeck H, Bscheider M et al (2009) Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature 459:433–436. https://doi.org/10.1038/nature07965

    Article  CAS  PubMed  Google Scholar 

  35. Groß CJ, Mishra R, Schneider KS et al (2016) K(+) Efflux-independent NLRP3 inflammasome activation by small molecules targeting mitochondria. Immunity 45:761–773. https://doi.org/10.1016/j.immuni.2016.08.010

    Article  CAS  PubMed  Google Scholar 

  36. Franchi L, Eigenbrod T, Muñoz-Planillo R et al (2014) Cytosolic double-stranded RNA activates the NLRP3 inflammasome via MAVS-induced membrane permeabilization and K+ efflux. J Immunol 193:4214–4222. https://doi.org/10.4049/jimmunol.1400582

    Article  CAS  PubMed  Google Scholar 

  37. Pétrilli V, Papin S, Dostert C et al (2007) Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ 14:1583–1589. https://doi.org/10.1038/sj.cdd.4402195

    Article  CAS  PubMed  Google Scholar 

  38. Perregaux D, Gabel CA (1994) Interleukin-1 beta maturation and release in response to ATP and nigericin. Evidence that potassium depletion mediated by these agents is a necessary and common feature of their activity. J Biol Chem 269:15195–15203

    Article  CAS  PubMed  Google Scholar 

  39. Neuwirt E, Gorka O, Saller BS et al (2021) NLRP3 as a sensor of metabolism gone awry. Curr Opin Biotechnol 68:300–309. https://doi.org/10.1016/j.copbio.2021.03.009

    Article  CAS  PubMed  Google Scholar 

  40. Hornung V, Bauernfeind F, Halle A et al (2008) Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 9:847–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen J, Chen ZJ (2018) PtdIns4P on dispersed trans-Golgi network mediates NLRP3 inflammasome activation. Nature 564:71–76. https://doi.org/10.1038/s41586-018-0761-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Coll RC, Robertson AAB, Chae JJ et al (2015) A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med 21:248–255. https://doi.org/10.1038/nm.3806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shao B-Z, Xu Z-Q, Han B-Z et al (2015) NLRP3 inflammasome and its inhibitors: a review. Front Pharmacol 6:262. https://doi.org/10.3389/fphar.2015.00262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Duncan JA, Bergstralh DT, Wang Y et al (2007) Cryopyrin/NALP3 binds ATP/dATP, is an ATPase, and requires ATP binding to mediate inflammatory signaling. Proc Natl Acad Sci USA 104:8041–8046. https://doi.org/10.1073/pnas.0611496104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tapia-Abellán A, Angosto-Bazarra D, Martínez-Banaclocha H et al (2019) MCC950 closes the active conformation of NLRP3 to an inactive state. Nat Chem Biol 15:560–564. https://doi.org/10.1038/s41589-019-0278-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gross O, Yazdi AS, Thomas CJ et al (2012) Inflammasome activators induce interleukin-1α secretion via distinct pathways with differential requirement for the protease function of caspase-1. Immunity 36:388–400. https://doi.org/10.1016/j.immuni.2012.01.018

    Article  CAS  PubMed  Google Scholar 

  47. Redecke V, Wu R, Zhou J et al (2013) Hematopoietic progenitor cell lines with myeloid and lymphoid potential. Nat Methods 10:795–803. https://doi.org/10.1038/nmeth.2510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schneider KS, Thomas CJ, Gross O (2013) Inflammasome activation and inhibition in primary murine bone marrow-derived cells, and assays for IL-1α, IL-1β, and caspase-1. Methods Mol Biol 1040:117–135. https://doi.org/10.1007/978-1-62703-523-1_10

    Article  CAS  PubMed  Google Scholar 

  49. Tweedell RE, Malireddi RKS, Kanneganti T-D (2020) A comprehensive guide to studying inflammasome activation and cell death. Nat Protoc 15:3284–3333. https://doi.org/10.1038/s41596-020-0374-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Demarco B, Grayczyk JP, Bjanes E et al (2020) Caspase-8-dependent gasdermin D cleavage promotes antimicrobial defense but confers susceptibility to TNF-induced lethality. Sci Adv 6:eabc3465. https://doi.org/10.1126/sciadv.abc3465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bailey JD, Shaw A, McNeill E et al (2020) Isolation and culture of murine bone marrow-derived macrophages for nitric oxide and redox biology. Nitric Oxide 100-101:17–29. https://doi.org/10.1016/j.niox.2020.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Murray PJ, Allen JE, Biswas SK et al (2014) Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41:14–20. https://doi.org/10.1016/j.immuni.2014.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shio MT, Tiemi Shio M, Eisenbarth SC et al (2009) Malarial hemozoin activates the NLRP3 inflammasome through Lyn and Syk kinases. PLoS Pathog 5:e1000559. https://doi.org/10.1371/journal.ppat.1000559

    Article  CAS  PubMed  Google Scholar 

  54. Lima-Junior DS, Costa DL, Carregaro V et al (2013) Inflammasome-derived IL-1β production induces nitric oxide-mediated resistance to Leishmania. Nat Med 19:909–915. https://doi.org/10.1038/nm.3221

    Article  CAS  PubMed  Google Scholar 

  55. Coll RC, Hill JR, Day CJ et al (2019) MCC950 directly targets the NLRP3 ATP-hydrolysis motif for inflammasome inhibition. Nat Chem Biol 15:556–559. https://doi.org/10.1038/s41589-019-0277-7

    Article  CAS  PubMed  Google Scholar 

  56. van de Veerdonk FL, Joosten LAB, Devesa I et al (2009) Bypassing pathogen-induced inflammasome activation for the regulation of interleukin-1beta production by the fungal pathogen Candida albicans. J Infect Dis 199:1087–1096. https://doi.org/10.1086/597274

    Article  CAS  PubMed  Google Scholar 

  57. Lamkanfi M, Malireddi RKS, Kanneganti T-D (2009) Fungal zymosan and mannan activate the cryopyrin inflammasome. J Biol Chem 284:20574–20581. https://doi.org/10.1074/jbc.M109.023689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Martinon F, Pétrilli V, Mayor A et al (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440:237–241. https://doi.org/10.1038/nature04516

    Article  CAS  PubMed  Google Scholar 

  59. Briard B, Fontaine T, Samir P et al (2020) Galactosaminogalactan activates the inflammasome to provide host protection. Nature 588:688–692. https://doi.org/10.1038/s41586-020-2996-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. McNeela EA, Burke A, Neill DR et al (2010) Pneumolysin activates the NLRP3 inflammasome and promotes proinflammatory cytokines independently of TLR4. PLoS Pathog 6:e1001191. https://doi.org/10.1371/journal.ppat.1001191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hoegen T, Tremel N, Klein M et al (2011) The NLRP3 inflammasome contributes to brain injury in pneumococcal meningitis and is activated through ATP-dependent lysosomal cathepsin B release. J Immunol 187:5440–5451. https://doi.org/10.4049/jimmunol.1100790

    Article  CAS  PubMed  Google Scholar 

  62. Tzeng T-C, Schattgen S, Monks B et al (2016) A fluorescent reporter mouse for inflammasome assembly demonstrates an important role for cell-bound and free ASC specks during in vivo infection. Cell Rep 16:571–582. https://doi.org/10.1016/j.celrep.2016.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf Groß .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Saller, B.S., Neuwirt, E., Groß, O. (2023). Methods to Activate the NLRP3 Inflammasome. In: Pelegrín, P., Di Virgilio, F. (eds) NLR Proteins. Methods in Molecular Biology, vol 2696. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3350-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3350-2_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3349-6

  • Online ISBN: 978-1-0716-3350-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation