Chromatin Immunoprecipitation (ChIP) of Heat Shock Protein 90 (Hsp90)

  • Protocol
  • First Online:
Chaperones

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2693))

Abstract

Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is a widely used technique for genome-wide map** of protein–DNA interactions and epigenetic marks in vivo. Recent studies have suggested an important role of heat shock protein 90 (Hsp90) in chromatin. This molecular chaperone assists other proteins to acquire their mature and functional conformation and helps in the assembly of many complexes. In this chapter, we provide specific details on how to perform Hsp90 ChIP-seq from Drosophila Schneider (S2) cells. Briefly, cells are simultaneously lyzed and reversibly cross-linked to stabilize protein–DNA interactions. Chromatin is prepared from isolated nuclei and sheared by sonication. Hsp90-bound loci are immunoprecipitated and the corresponding DNA fragments are purified and sequenced. The described approach revealed that Hsp90 binds close to the transcriptional start site of around one-third of all Drosophila coding genes and characterized the role of the chaperone at chromatin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Verma S, Goyal S, Jamal S, Singh A, Grover A (2016) Hsp90: friends, clients and natural foes. Biochimie 127:227–240

    Article  CAS  PubMed  Google Scholar 

  2. Katerina S, Evangelia P (2014) HSP90 inhibitors: current development and potential in cancer therapy. Recent Pat Anticancer Drug Discov 9(1):1–20

    Google Scholar 

  3. Calderwood SK, Neckers L (2016) Chapter four – Hsp90 in cancer: transcriptional roles in the nucleus. In: Jennifer I, Luke W (eds) Advances in cancer research, vol 129. Academic, pp 89–106

    Google Scholar 

  4. Sawarkar R, Paro R (2013) Hsp90@chromatin.nucleus: an emerging hub of a networker. Trends Cell Biol 23(4):193–201

    Article  CAS  PubMed  Google Scholar 

  5. Pratt WB, Toft DO (1997) Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr Rev 18(3):306–360

    CAS  PubMed  Google Scholar 

  6. Bennesch MA, Segala G, Wider D, Picard D (2016) LSD1 engages a corepressor complex for the activation of the estrogen receptor α by estrogen and cAMP. Nucleic Acids Res 44(18):8655–8670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Freeman BC, Yamamoto KR (2002) Disassembly of transcriptional regulatory complexes by molecular chaperones. Science 296(5576):2232–2235

    Article  CAS  PubMed  Google Scholar 

  8. Boulon S et al (2010) HSP90 and its R2TP/Prefoldin-like cochaperone are involved in the cytoplasmic assembly of RNA polymerase II. Mol Cell 39(6):912–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sawarkar R, Sievers C, Paro R (2012) Hsp90 globally targets paused RNA polymerase to regulate gene expression in response to environmental stimuli. Cell 149(4):807–818

    Article  CAS  PubMed  Google Scholar 

  10. Isaacs JS (2016) Chapter five – Hsp90 as a “chaperone” of the epigenome: insights and opportunities for cancer therapy. In: Jennifer I, Luke W (eds) Advances in cancer research, vol 129. Academic, pp 107–140

    Google Scholar 

  11. Brown MA et al (2015) C-terminal domain of SMYD3 serves as a unique HSP90-regulated motif in oncogenesis. Oncotarget 6(6):4005–4019

    Article  PubMed  PubMed Central  Google Scholar 

  12. Tariq M, Nussbaumer U, Chen Y, Beisel C, Paro R (2009) Trithorax requires Hsp90 for maintenance of active chromatin at sites of gene expression. Proc Natl Acad Sci U S A 106(4):1157–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Echtenkamp Frank J et al (2016) Hsp90 and p23 molecular chaperones control chromatin architecture by maintaining the functional pool of the RSC chromatin remodeler. Mol Cell 64(5):888–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fiskus W et al (2009) Panobinostat treatment depletes EZH2 and DNMT1 levels and enhances decitabine mediated de-repression of JunB and loss of survival of human acute leukemia cells. Cancer Biol Ther 8(10):939–950

    Article  CAS  PubMed  Google Scholar 

  15. Park PJ (2009) ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet 10(10):669–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Anders L et al (2014) Genome-wide determination of drug localization. Nat Biotechnol 32(1):92–96

    Article  CAS  PubMed  Google Scholar 

  17. Moulick K et al (2011) Affinity-based proteomics reveal cancer-specific networks coordinated by Hsp90. Nat Chem Biol 7(11):818–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Baubec T, Ivánek R, Lienert F, Schübeler D (2013) Methylation-dependent and -independent genomic targeting principles of the MBD protein family. Cell 153(2):480–492

    Article  CAS  PubMed  Google Scholar 

  19. Steensel BV, Henikoff S (2000) Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase. Nat Biotechnol 18(4):424–428

    Article  PubMed  Google Scholar 

  20. Bardet AF, He Q, Zeitlinger J, Stark A (2012) A computational pipeline for comparative ChIP-seq analyses. Nat Protoc 7(1):45–61

    Article  CAS  Google Scholar 

  21. Arrigoni L et al (2016) Standardizing chromatin research: a simple and universal method for ChIP-seq. Nucleic Acids Res 44(7):e67–e67

    Article  PubMed  Google Scholar 

  22. Antonova A et al (2019) Heat-shock protein 90 controls the expression of cell-cycle genes by stabilizing metazoan-specific host-cell factor HCFC1. Cell Rep 29(6):1645–1659.e9

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritwick Sawarkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sawarkar, R. (2023). Chromatin Immunoprecipitation (ChIP) of Heat Shock Protein 90 (Hsp90). In: Calderwood, S.K., Prince, T.L. (eds) Chaperones. Methods in Molecular Biology, vol 2693. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3342-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3342-7_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3341-0

  • Online ISBN: 978-1-0716-3342-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation