Using a Modified Proximity Ligation Protocol to Study the Interaction Between Chaperones and Associated Proteins

  • Protocol
  • First Online:
Chaperones

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2693))

  • 508 Accesses

Abstract

Molecular chaperones can interact with multiple proteins to form large networks. Understanding these interactions may shed light on the complexity of the chaperone functions. Here we developed a protocol for a modified proximity ligation-based methodology (PLA) for the detection of protein–protein interactions in order to understand how the Hsp70-Bag3 complex interacts with components of the Hippo signaling pathway. These experiments helped to elucidate the mechanisms of transmission of the proteotoxic stress signal to the Hippo pathway. The modified PLA technology has many advantages compared to co-immunoprecipitation protocols. It has higher sensitivity, is quantitative, and can be done in a 96-well format.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Spain)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 179.99
Price includes VAT (Spain)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 228.79
Price includes VAT (Spain)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475:324–332

    Article  CAS  PubMed  Google Scholar 

  2. Chaperone machines for protein folding, unfolding and disaggregation | Nature Reviews Molecular Cell Biology, https://www.nature.com/articles/nrm3658

  3. Morán Luengo T, Mayer MP, Rüdiger SGD (2019) The Hsp70-Hsp90 chaperone cascade in protein folding. Trends Cell Biol 29:164–177

    Article  PubMed  Google Scholar 

  4. Rosenzweig R, Nillegoda NB, Mayer MP et al (2019) The Hsp70 chaperone network. Nat Rev Mol Cell Biol 20:665–680

    Article  CAS  PubMed  Google Scholar 

  5. Kam**a HH, Craig EA (2010) The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol 11:579–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Albakova Z, Armeev GA, Kanevskiy LM et al (2020) HSP70 multi-functionality in cancer. Cell 9:E587

    Article  Google Scholar 

  7. Shemesh N, Jubran J, Dror S et al (2021) The landscape of molecular chaperones across human tissues reveals a layered architecture of core and variable chaperones. Nat Commun 12:2180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Meriin AB, Narayanan A, Meng L et al (2018) Hsp70-Bag3 complex is a hub for proteotoxicity-induced signaling that controls protein aggregation. Proc Natl Acad Sci USA 115:E7043–E7052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Baldan S, Meriin AB, Yaglom J et al (2021) The Hsp70-Bag3 complex modulates the phosphorylation and nuclear translocation of hippo pathway protein yap. J Cell Sci 134:jcs259107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Adler M, Wacker R, Niemeyer CM (2008) Sensitivity by combination: immuno-PCR and related technologies. Analyst 133:702–718

    Article  CAS  PubMed  Google Scholar 

  11. Malou N, Raoult D (2011) Immuno-PCR: a promising ultrasensitive diagnostic method to detect antigens and antibodies. Trends Microbiol 19:295–302

    Article  CAS  PubMed  Google Scholar 

  12. Sherman MY, Gabai V (2022) The role of Bag3 in cell signaling. J Cell Biochem 123:43–53

    Article  CAS  PubMed  Google Scholar 

  13. Colvin TA, Gabai VL, Gong J et al (2014) Hsp70-Bag3 interactions regulate cancer-related signaling networks. Cancer Res 74:4731–4740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ammirante M, Rosati A, Arra C et al (2010) IKK{gamma} protein is a target of BAG3 regulatory activity in human tumor growth. Proc Natl Acad Sci USA 107:7497–7502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ulbricht A, Höhfeld J (2013) Tension-induced autophagy: may the chaperone be with you. Autophagy 9:920–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hiebel C, StĂĽrner E, Hoffmeister M et al (2020) BAG3 proteomic signature under Proteostasis stress. Cell 9:E2416

    Article  Google Scholar 

  17. Garrido C, Schmitt E, Candé C et al (2003) HSP27 and HSP70: potentially oncogenic apoptosis inhibitors. Cell Cycle 2:578–583

    Article  Google Scholar 

  18. Sherman MY, Gabai VL (2015) Hsp70 in cancer: back to the future. Oncogene 34:4153–4161

    Article  CAS  PubMed  Google Scholar 

  19. Murphy ME (2013) The HSP70 family and cancer. Carcinogenesis 34:1181–1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ulbricht A, Eppler FJ, Tapia VE et al (2013) Cellular Mechanotransduction relies on tension-induced and chaperone-assisted autophagy. Curr Biol 23:430–435

    Article  CAS  PubMed  Google Scholar 

  21. Zhu C, Li L, Zhao B (2015) The regulation and function of YAP transcription co-activator. Acta Biochim Biophys Sin 47:16–28

    Article  CAS  PubMed  Google Scholar 

  22. Meng Z, Moroishi T, Guan K-L (2016) Mechanisms of hippo pathway regulation. Genes Dev 30:1–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chan EHY, Nousiainen M, Chalamalasetty RB et al (2005) The Ste20-like kinase Mst2 activates the human large tumor suppressor kinase Lats1. Oncogene 24:2076–2086

    Article  CAS  PubMed  Google Scholar 

  24. Varelas X (2014) The hippo pathway effectors TAZ and YAP in development, homeostasis and disease. Development 141:1614–1626

    Article  CAS  PubMed  Google Scholar 

  25. Yaglom JA, Wang Y, Li A et al (2018) Cancer cell responses to Hsp70 inhibitor JG-98: comparison with Hsp90 inhibitors and finding synergistic drug combinations. Sci Rep 8:3010

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoli B. Meriin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Baldan, S., Meriin, A.B., Sherman, M.Y. (2023). Using a Modified Proximity Ligation Protocol to Study the Interaction Between Chaperones and Associated Proteins. In: Calderwood, S.K., Prince, T.L. (eds) Chaperones. Methods in Molecular Biology, vol 2693. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3342-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3342-7_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3341-0

  • Online ISBN: 978-1-0716-3342-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation