An In Vitro System to Analyze Generation and Degradation of Phagosomal Phosphatidylinositol Phosphates

  • Protocol
  • First Online:
Phagocytosis and Phagosomes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2692))

  • 565 Accesses

Abstract

Phagosomes are formed when phagocytic cells take up large particles, and they develop into phagolysosomes where the particles are degraded. The transformation of nascent phagosomes into phagolysosomes is a complex multi-step process, and the precise timing of these steps depends at least in part on phosphatidylinositol phosphates (PIPs). Some such-called “intracellular pathogens” are not delivered to microbicidal phagolysosomes and manipulate the PIP composition of the phagosomes they reside in. Studying the dynamic changes of the PIP composition of inert-particle phagosomes will help to understand why the pathogens’ manipulations reprogram phagosome maturation.

We here describe a method to detect and to follow generation and degradation of PIPs on purified phagosomes. To this end, phagosomes formed around inert latex beads are purified from J774E macrophages and incubated in vitro with PIP-binding protein domains or PIP-binding antibodies. Binding of such PIP sensors to phagosomes indicates presence of the cognate PIP and is quantified by immunofluorescence microscopy. When phagosomes are incubated with PIP sensors and ATP at a physiological temperature, the generation and degradation of PIPs can be followed, and PIP-metabolizing enzymes can be identified using specific inhibitory agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fountain A, Inpanathan S, Alves P et al (2021) Phagosome maturation in macrophages: eat, digest, adapt, and repeat. Adv Biol Regul 82:100832. https://doi.org/10.1016/j.jbior.2021.100832

    Article  CAS  PubMed  Google Scholar 

  2. Haas A (2007) The phagosome: compartment with a license to kill. Traffic 8:311–330. https://doi.org/10.1111/j.1600-0854.2006.00531.x

    Article  CAS  PubMed  Google Scholar 

  3. Desjardins M, Huber LA, Parton RG et al (1994) Biogenesis of phagolysosomes proceeds through a sequential series of interactions with the endocytic apparatus. J Cell Biol 124:677–688. https://doi.org/10.1083/jcb.124.5.677

    Article  CAS  PubMed  Google Scholar 

  4. Lancaster CE, Fountain A, Dayam RM et al (2021) Phagosome resolution regenerates lysosomes and maintains the degradative capacity in phagocytes. J Cell Biol 220. https://doi.org/10.1083/jcb.202005072

  5. Levin-Konigsberg R, Montaño-Rendón F, Keren-Kaplan T et al (2019) Phagolysosome resolution requires contacts with the endoplasmic reticulum and phosphatidylinositol-4-phosphate signalling. Nat Cell Biol 21:1234–1247. https://doi.org/10.1038/s41556-019-0394-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pizarro-Cerdá J, Cossart P (2004) Subversion of phosphoinositide metabolism by intracellular bacterial pathogens. Nat Cell Biol 6:1026–1033. https://doi.org/10.1038/ncb1104-1026

    Article  CAS  PubMed  Google Scholar 

  7. Weber SS, Ragaz C, Hilbi H (2009) Pathogen trafficking pathways and host phosphoinositide metabolism. Mol Microbiol 71:1341–1352. https://doi.org/10.1111/j.1365-2958.2009.06608.x

    Article  CAS  PubMed  Google Scholar 

  8. Posor Y, Jang W, Haucke V (2022) Phosphoinositides as membrane organizers. Nat Rev Mol Cell Biol:1–20. https://doi.org/10.1038/s41580-022-00490-x

  9. Balla A, Balla T (2006) Phosphatidylinositol 4-kinases: old enzymes with emerging functions. Trends Cell Biol 16:351–361. https://doi.org/10.1016/j.tcb.2006.05.003

    Article  CAS  PubMed  Google Scholar 

  10. de Matteis MA, Godi A (2004) PI-loting membrane traffic. Nat Cell Biol 6:487–492. https://doi.org/10.1038/ncb0604-487

    Article  CAS  PubMed  Google Scholar 

  11. Rusten TE, Stenmark H (2006) Analyzing phosphoinositides and their interacting proteins. Nat Methods 3:251–258. https://doi.org/10.1038/nmeth867

    Article  CAS  PubMed  Google Scholar 

  12. Kutateladze TG (2010) Translation of the phosphoinositide code by PI effectors. Nat Chem Biol 6:507–513. https://doi.org/10.1038/nchembio.390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Levin R, Grinstein S, Schlam D (2015) Phosphoinositides in phagocytosis and macropinocytosis. Biochim Biophys Acta 1851:805–823. https://doi.org/10.1016/j.bbalip.2014.09.005

    Article  CAS  PubMed  Google Scholar 

  14. Vieira OV, Harrison RE, Scott CC et al (2004) Acquisition of Hrs, an essential component of phagosomal maturation, is impaired by mycobacteria. Mol Cell Biol 24:4593–4604. https://doi.org/10.1128/MCB.24.10.4593-4604.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jeschke A, Zehethofer N, Lindner B et al (2015) Phosphatidylinositol 4-phosphate and phosphatidylinositol 3-phosphate regulate phagolysosome biogenesis. Proc Natl Acad Sci U S A 112:4636–4641. https://doi.org/10.1073/pnas.1423456112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Defacque H, Bos E, Garvalov B et al (2002) Phosphoinositides regulate membrane-dependent actin assembly by latex bead phagosomes. Mol Biol Cell 13:1190–1202. https://doi.org/10.1091/mbc.01-06-0314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gillooly DJ, Morrow IC, Lindsay M et al (2000) Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. EMBO J 19:4577–4588. https://doi.org/10.1093/emboj/19.17.4577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dowler S, Currie RA, Campbell DG et al (2000) Identification of pleckstrin-homology-domain-containing proteins with novel phosphoinositide-binding specificities. Biochem J 351:19–31. https://doi.org/10.1042/0264-6021:3510019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fiani ML, Beitz J, Turvy D et al (1998) Regulation of mannose receptor synthesis and turnover in mouse J774 macrophages. J Leukoc Biol 64:85–91. https://doi.org/10.1002/jlb.64.1.85

    Article  CAS  PubMed  Google Scholar 

  20. Siddhanta U, McIlroy J, Shah A et al (1998) Distinct roles for the p110alpha and hVPS34 phosphatidylinositol 3′-kinases in vesicular trafficking, regulation of the actin cytoskeleton, and mitogenesis. J Cell Biol 143:1647–1659. https://doi.org/10.1083/jcb.143.6.1647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ronan B, Flamand O, Vescovi L et al (2014) A highly potent and selective Vps34 inhibitor alters vesicle trafficking and autophagy. Nat Chem Biol 10:1013–1019. https://doi.org/10.1038/nchembio.1681

    Article  CAS  PubMed  Google Scholar 

  22. Bago R, Malik N, Munson MJ et al (2014) Characterization of VPS34-IN1, a selective inhibitor of Vps34, reveals that the phosphatidylinositol 3-phosphate-binding SGK3 protein kinase is a downstream target of class III phosphoinositide 3-kinase. Biochem J 463:413–427. https://doi.org/10.1042/BJ20140889

    Article  CAS  PubMed  Google Scholar 

  23. Endemann GC, Graziani A, Cantley LC (1991) A monoclonal antibody distinguishes two types of phosphatidylinositol 4-kinase. Biochem J 273(Pt 1):63–66. https://doi.org/10.1042/bj2730063

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Deutsche Forschungsgemeinschaft (HA 1929/13-1) to Albert Haas, Institute for Cell Biology, University of Bonn, Bonn, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Jeschke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jeschke, A. (2023). An In Vitro System to Analyze Generation and Degradation of Phagosomal Phosphatidylinositol Phosphates. In: Botelho, R.J. (eds) Phagocytosis and Phagosomes. Methods in Molecular Biology, vol 2692. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3338-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3338-0_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3337-3

  • Online ISBN: 978-1-0716-3338-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation