Measurement of Salmonella enterica Internalization and Vacuole Lysis in Epithelial Cells

  • Protocol
  • First Online:
Phagocytosis and Phagosomes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2692))

  • 635 Accesses

Abstract

Establishment of an intracellular niche within mammalian cells is key to the pathogenesis of the gastrointestinal bacterium, Salmonella enterica serovar Typhimurium (S. Typhimurium). Here we will describe how to study the internalization of S. Typhimurium into human epithelial cells using the gentamicin protection assay. The assay takes advantage of the relatively poor penetration of gentamicin into mammalian cells; internalized bacteria are effectively protected from its antibacterial actions. A second assay, the chloroquine (CHQ) resistance assay, can be used to determine the proportion of internalized bacteria that have lysed or damaged their Salmonella-containing vacuole and are therefore residing within the cytosol. Its application to the quantification of cytosolic S. Typhimurium in epithelial cells will also be presented. Together, these protocols provide an inexpensive, rapid, and sensitive quantitative measure of bacterial internalization and vacuole lysis by S. Typhimurium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Magoffin RL, Spink WW (1950) The protection of intracellular Brucella against streptomycin alone and in combination with other antibiotics. J Lab Clin Med 36(6):959–960

    CAS  PubMed  Google Scholar 

  2. Holmes B, Quie PG, Windhorst DB, Pollara B, Good RA (1966) Protection of phagocytized bacteria from the killing action of antibiotics. Nature 210(5041):1131–1132

    Article  CAS  PubMed  Google Scholar 

  3. Elsinghorst EA (1994) Measurement of invasion by gentamicin resistance. Meth Enzymol 236:405–420

    Article  CAS  Google Scholar 

  4. Takano M, Ohishi Y, Okuda M, Yasuhara M, Hori R (1994) Transport of gentamicin and fluid-phase endocytosis markers in the LLC-PK1 kidney epithelial cell line. J Pharmacol Exp Ther 268(2):669–674

    CAS  PubMed  Google Scholar 

  5. Myrdal SE, Steyger PS (2005) TRPV1 regulators mediate gentamicin penetration of cultured kidney cells. Hear Res 204(1–2):170–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Seral C, Van Bambeke F, Tulkens PM (2003) Quantitative analysis of gentamicin, azithromycin, telithromycin, ciprofloxacin, moxifloxacin, and oritavancin (LY333328) activities against intracellular Staphylococcus aureus in mouse J774 macrophages. Antimicrob Agents Chemother 47(7):2283–2292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sandoval RM, Dunn KW, Molitoris BA (2000) Gentamicin traffics rapidly and directly to the Golgi complex in LLC-PK(1) cells. Am J Physiol Renal Physiol 279(5):F884–F890

    Article  CAS  PubMed  Google Scholar 

  8. Myrdal SE, Johnson KC, Steyger PS (2005) Cytoplasmic and intra-nuclear binding of gentamicin does not require endocytosis. Hear Res 204(1-2):156–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Galán JE, Curtiss R (1989) Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells. Proc Natl Acad Sci U S A 86(16):6383–6387

    Article  PubMed  PubMed Central  Google Scholar 

  10. Haraga A, Ohlson MB, Miller SI (2008) Salmonellae interplay with host cells. Nat Rev Microbiol 6(1):53–66

    Article  CAS  PubMed  Google Scholar 

  11. Khoramian-Falsafi T, Harayama S, Kutsukake K, Pechère JC (1990) Effect of motility and chemotaxis on the invasion of Salmonella typhimurium into HeLa cells. Microb Pathog 9(1):47–53

    Article  CAS  PubMed  Google Scholar 

  12. Jones BD, Lee CA, Falkow S (1992) Invasion by Salmonella typhimurium is affected by the direction of flagellar rotation. Infect Immun 60(6):2475–2480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. van Asten FJAM, Hendriks HGCJM, Koninkx JFJG, van Dijk JE (2004) Flagella-mediated bacterial motility accelerates but is not required for Salmonella serotype Enteritidis invasion of differentiated Caco-2 cells. Int J Med Microbiol 294(6):395–399

    Article  PubMed  Google Scholar 

  14. Chubiz JEC, Golubeva YA, Lin D, Miller LD, Slauch JM (2010) FliZ regulates expression of the Salmonella pathogenicity Island 1 invasion locus by controlling HilD protein activity in Salmonella enterica serovar typhimurium. J Bacteriol 192(23):6261–6270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Golubeva YA, Sadik AY, Ellermeier JR, Slauch JM (2012) Integrating global regulatory input into the Salmonella pathogenicity Island 1 type III secretion system. Genetics 190(1):79–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Singer HM, Kühne C, Deditius JA, Hughes KT, Erhardt M (2014) The Salmonella Spi1 virulence regulatory protein HilD directly activates transcription of the flagellar master operon flhDC. J Bacteriol 196(7):1448–1457

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ochman H, Soncini FC, Solomon F, Groisman EA (1996) Identification of a pathogenicity Island required for Salmonella survival in host cells. Proc Natl Acad Sci U S A 93(15):7800–7804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shea JE, Hensel M, Gleeson C, Holden DW (1996) Identification of a virulence locus encoding a second type III secretion system in Salmonella typhimurium. Proc Natl Acad Sci U S A 93(6):2593–2597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Figueira R, Holden DW (2012) Functions of the Salmonella pathogenicity Island 2 (SPI-2) type III secretion system effectors. Microbiology (Reading, Engl) 158(Pt 5):1147–1161

    Article  CAS  Google Scholar 

  20. Birmingham CL, Brumell JH (2006) Autophagy recognizes intracellular Salmonella enterica serovar Typhimurium in damaged vacuoles. Autophagy 2(3):156–158

    Article  CAS  PubMed  Google Scholar 

  21. Knodler LA, Nair V, Steele-Mortimer O (2014) Quantitative assessment of cytosolic Salmonella in epithelial cells. PLoS One 9(1):e84681

    Article  PubMed  PubMed Central  Google Scholar 

  22. Thurston TLM, Ryzhakov G, Bloor S, Muhlinen von N, Randow F (2009) The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat Immunol 10(11):1215–1221

    Article  CAS  PubMed  Google Scholar 

  23. Wild P et al (2011) Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333(6039):228–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tattoli I et al (2012) Amino acid starvation induced by invasive bacterial pathogens triggers an innate host defense program. Cell Host Microbe 11(6):563–575

    Article  CAS  PubMed  Google Scholar 

  25. Yu HB et al (2014) Autophagy facilitates Salmonella replication in HeLa cells. MBio 5(2):e00865–e00814

    Article  PubMed  PubMed Central  Google Scholar 

  26. Knodler LA et al (2010) Dissemination of invasive Salmonella via bacterial-induced extrusion of mucosal epithelia. Proc Natl Acad Sci U S A 107(41):17733–17738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Malik-Kale P, Winfree S, Steele-Mortimer O (2012) The bimodal lifestyle of intracellular Salmonella in epithelial cells: replication in the cytosol obscures defects in vacuolar replication. PLoS One 7(6):e38732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Steinberg TH (1994) Cellular transport of drugs. Clin Infect Dis 19(5):916–921

    Article  CAS  PubMed  Google Scholar 

  29. Finlay BB, Falkow S (1988) Comparison of the invasion strategies used by Salmonella cholerae-suis, Shigella flexneri and Yersinia enterocolitica to enter cultured animal cells: endosome acidification is not required for bacterial invasion or intracellular replication. Biochimie 70(8):1089–1099

    Article  CAS  PubMed  Google Scholar 

  30. Zychlinsky A et al (1994) IpaB mediates macrophage apoptosis induced by Shigella flexneri. Mol Microbiol 11(4):619–627

    Article  CAS  PubMed  Google Scholar 

  31. Hoiseth SK, Stocker BA (1981) Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature 291(5812):238–239

    Article  CAS  PubMed  Google Scholar 

  32. Jarvik T, Smillie C, Groisman EA, Ochman H (2010) Short-term signatures of evolutionary change in the Salmonella enterica serovar typhimurium 14028 genome. J Bacteriol 192(2):560–567

    Article  CAS  PubMed  Google Scholar 

  33. Jones PW, Collins P, Aitken MM (1988) Passive protection of calves against experimental infection with Salmonella typhimurium. Vet Rec 123(21):536–541

    Article  CAS  PubMed  Google Scholar 

  34. Clark L et al (2011) Differences in Salmonella enterica serovar Typhimurium strain invasiveness are associated with heterogeneity in SPI-1 gene expression. Microbiology (Reading, Engl) 157(Pt 7):2072–2083

    Article  CAS  Google Scholar 

  35. Bajaj V, Lucas RL, Hwang C, Lee CA (1996) Co-ordinate regulation of Salmonella typhimurium invasion genes by environmental and regulatory factors is mediated by control of hilA expression. Mol Microbiol 22(4):703–714

    Article  CAS  PubMed  Google Scholar 

  36. Ibarra JA et al (2010) Induction of Salmonella pathogenicity Island 1 under different growth conditions can affect Salmonella-host cell interactions in vitro. Microbiology (Reading, Engl) 156(Pt 4):1120–1133

    Article  CAS  Google Scholar 

  37. Menashe O, Kaganskaya E, Baasov T, Yaron S (2008) Aminoglycosides affect intracellular Salmonella enterica serovars Typhimurium and Virchow. Antimicrob Agents Chemother 52(3):920–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by start-up funds from the Paul G. Allen School for Global Animal Health and the Stanley L. Adler Research Fund (LAK). TRP is supported by an NIH/NIAID Training Grant 2T32AI007025. JAK is the recipient of a Poncin Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leigh A. Knodler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Klein, J.A., Powers, T.R., Knodler, L.A. (2023). Measurement of Salmonella enterica Internalization and Vacuole Lysis in Epithelial Cells. In: Botelho, R.J. (eds) Phagocytosis and Phagosomes. Methods in Molecular Biology, vol 2692. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3338-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3338-0_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3337-3

  • Online ISBN: 978-1-0716-3338-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation