Protein–Protein Interaction Network Analysis Using NetworkX

  • Protocol
  • First Online:
Protein-Protein Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2690))

Abstract

In recent years, extracting information from biological data has become a particularly valuable way of gaining knowledge. Molecular interaction networks provide a framework for visualizing cellular processes, but their complexity frequently makes their interpretation difficult. Proteins are one of the primary determinants of biological function. Indeed, most biological activities in the living cells are functionally regulated by protein–protein interactions (PPIs). Thus, studying protein interactions is critical for understanding their roles within the cell. Exploring the PPI networks can open new avenues for future experimental studies and offer interspecies predictions for effective interaction map**. In this chapter we will demonstrate how to construct, visualize, and analyze a protein–protein interaction network using NetworkX.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Protocol
GBP 34.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 159.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 199.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wessling R, Epple P, Altmann S et al (2014) Convergent targeting of a common host protein-network by pathogen effectors from three kingdoms of life. Cell Host Microbe 16(3):364–375. https://doi.org/10.1016/j.chom.2014.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Smakowska-Luzan E, Mott GA, Parys K et al (2018) An extracellular network of Arabidopsis leucine-rich repeat receptor kinases. Nature 553(7688):342–346. https://doi.org/10.1038/nature25184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mukhtar MS, Carvunis AR, Dreze M et al (2011) Independently evolved virulence effectors converge onto hubs in a plant immune system network. Science 333(6042):596–601. https://doi.org/10.1126/science.1203659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mott GA, Smakowska-Luzan E, Pasha A et al (2019) Map of physical interactions between extracellular domains of Arabidopsis leucine-rich repeat receptor kinases. Sci Data 6:190025. https://doi.org/10.1038/sdata.2019.25

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mishra B, Sun Y, Howton TC et al (2018) Dynamic modeling of transcriptional gene regulatory network uncovers distinct pathways during the onset of Arabidopsis leaf senescence. NPJ Syst Biol Appl 4:35. https://doi.org/10.1038/s41540-018-0071-2

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mishra B, Sun Y, Ahmed H et al (2017) Global temporal dynamic landscape of pathogen-mediated subversion of Arabidopsis innate immunity. Sci Rep 7(1):7849. https://doi.org/10.1038/s41598-017-08073-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mishra B, Kumar N, Shahid Mukhtar M (2022) A rice protein interaction network reveals high centrality nodes and candidate pathogen effector targets. Comput Struct Biotechnol J 20:2001–2012. https://doi.org/10.1016/j.csbj.2022.04.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mishra B, Kumar N, Mukhtar MS (2021) Network biology to uncover functional and structural properties of the plant immune system. Curr Opin Plant Biol 62:102057. https://doi.org/10.1016/j.pbi.2021.102057

    Article  CAS  PubMed  Google Scholar 

  9. Mishra B, Kumar N, Mukhtar MS (2019) Systems biology and machine learning in plant-pathogen interactions. Mol Plant-Microbe Interact 32(1):45–55. https://doi.org/10.1094/MPMI-08-18-0221-FI

    Article  CAS  PubMed  Google Scholar 

  10. McCormack ME, Lopez JA, Crocker TH et al (2016) Making the right connections: network biology and plant immune system dynamics. Curr Plant Biol 5:2–12

    Article  Google Scholar 

  11. Lopez J, Mukhtar MS (2017) Map** protein-protein interaction using high-throughput yeast 2-hybrid. Methods Mol Biol 1610:217–230. https://doi.org/10.1007/978-1-4939-7003-2_14

    Article  CAS  PubMed  Google Scholar 

  12. Kumar N, Mishra B, Mukhtar MS (2022) A pipeline of integrating transcriptome and interactome to elucidate central nodes in host-pathogens interactions. STAR Protoc 3(3):101608. https://doi.org/10.1016/j.xpro.2022.101608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kumar N, Mishra B, Mehmood A et al (2020) Integrative network biology framework elucidates molecular mechanisms of SARS-CoV-2 pathogenesis. iScience 23(9):101526. https://doi.org/10.1016/j.isci.2020.101526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Klopffleisch K, Phan N, Augustin K et al (2011) Arabidopsis G-protein interactome reveals connections to cell wall carbohydrates and morphogenesis. Mol Syst Biol 7:532. https://doi.org/10.1038/msb.2011.66

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gonzalez-Fuente M, Carrere S, Monachello D et al (2020) EffectorK, a comprehensive resource to mine for Ralstonia, Xanthomonas, and other published effector interactors in the Arabidopsis proteome. Mol Plant Pathol 21(10):1257–1270. https://doi.org/10.1111/mpp.12965

    Article  PubMed  PubMed Central  Google Scholar 

  16. Garbutt CC, Bangalore PV, Kannar P et al (2014) Getting to the edge: protein dynamical networks as a new frontier in plant-microbe interactions. Front Plant Sci 5:312. https://doi.org/10.3389/fpls.2014.00312

    Article  PubMed  PubMed Central  Google Scholar 

  17. Arabidopsis Interactome Map** C (2011) Evidence for network evolution in an Arabidopsis interactome map. Science 333(6042):601–607. https://doi.org/10.1126/science.1203877

    Article  CAS  Google Scholar 

  18. Ahmed H, Howton TC, Sun Y et al (2018) Network biology discovers pathogen contact points in host protein-protein interactomes. Nat Commun 9(1):2312. https://doi.org/10.1038/s41467-018-04632-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dhillon BK, Smith M, Baghela A et al (2020) Systems biology approaches to understanding the human immune system. Front Immunol 11:1683. https://doi.org/10.3389/fimmu.2020.01683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shoemaker BA, Panchenko AR (2007) Deciphering protein-protein interactions. Part I. Experimental techniques and databases. PLoS Comput Biol 3(3):e42. https://doi.org/10.1371/journal.pcbi.0030042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Spirin V, Mirny LA (2003) Protein complexes and functional modules in molecular networks. Proc Natl Acad Sci U S A 100(21):12123–12128. https://doi.org/10.1073/pnas.2032324100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wimalagunasekara S, Tirimanne S, Fernando PC (2022) Protein-protein interaction (PPI) network analysis reveals important hub proteins and sub-network modules for root development in rice (Oryza sativa). bioRxiv:2022.2006.2006.494990. https://doi.org/10.1101/2022.06.06.494990

  23. Fionda V (2011) Biological network analysis and comparison: mining new biological knowledge. Cent Eur J Comput Sci 1(2):185–193. https://doi.org/10.2478/s13537-011-0013-1

    Article  Google Scholar 

  24. Fionda V, Palopoli L, Panni S et al (2008) Protein-protein interaction network querying by a “focus and zoom” approach. In: Elloumi M, Küng J, Linial M, Murphy RF, Schneider K, Toma C (eds) Bioinformatics research and development. Springer, Berlin/Heidelberg, pp 331–346

    Chapter  Google Scholar 

  25. Wei Lan JW, Li M, Peng W, Fangxiang W (2015) Computational approaches for prioritizing candidate disease genes based on PPI networks. Tsinghua Sci Technol 20(5):500–512. https://doi.org/10.1109/tst.2015.7297749

    Article  Google Scholar 

  26. Park S-J, Choi J-S, Kim B-C et al (2009) PutidaNET: Interactome database service and network analysis of Pseudomonas putida KT2440. BMC Genomics 10(3):S18. https://doi.org/10.1186/1471-2164-10-S3-S18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sharan R, Ulitsky I, Shamir R (2007) Network-based prediction of protein function. Mol Syst Biol 3:88. https://doi.org/10.1038/msb4100129

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kiran M, Nagarajaram HA (2016) Interaction and localization diversities of global and local hubs in human protein–protein interaction networks. Mol BioSyst 12(9):2875–2882. https://doi.org/10.1039/C6MB00104A

    Article  CAS  PubMed  Google Scholar 

  29. Apic G, Ignjatovic T, Boyer S et al (2005) Illuminating drug discovery with biological pathways. FEBS Lett 579(8):1872–1877. https://doi.org/10.1016/j.febslet.2005.02.023

    Article  CAS  PubMed  Google Scholar 

  30. Hansen D, Shneiderman B, Smith M et al (2020) Social network analysis: measuring, map**, and modeling collections of connections. In: Analyzing social media networks with NodeXL: insights from a connected world. Elsevier Inc, pp 31–51. https://doi.org/10.1016/B978-0-12-817756-3.00003-0

    Chapter  Google Scholar 

  31. Hansen DL, Shneiderman B, Smith MA et al (2020) Social network analysis: measuring, map**, and modeling collections of connections. In: Analyzing social media networks with NodeXL, pp 31–51. https://doi.org/10.1016/B978-0-12-817756-3.00003-0

    Chapter  Google Scholar 

  32. Wang X, Gulbahce N, Yu H (2011) Network-based methods for human disease gene prediction. Brief Funct Genomics 10(5):280–293. https://doi.org/10.1093/bfgp/elr024

    Article  CAS  PubMed  Google Scholar 

  33. Albert RK (2007) Network inference, analysis, and modeling in systems biology. Plant Cell 19(11):3327–3338. https://doi.org/10.1105/tpc.107.054700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vidal M, Cusick ME, Barabasi AL (2011) Interactome networks and human disease. Cell 144(6):986–998. https://doi.org/10.1016/j.cell.2011.02.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Broido AD, Clauset A (2019) Scale-free networks are rare. Nat Commun 10(1):1017. https://doi.org/10.1038/s41467-019-08746-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liseron-Monfils C, Ware D (2015) Revealing gene regulation and associations through biological networks. Curr Plant Biol 3. https://doi.org/10.1016/j.cpb.2015.11.001

  37. Yu H, Kim PM, Sprecher E et al (2007) The importance of bottlenecks in protein networks: correlation with gene essentiality and expression dynamics. PLoS Comput Biol 3(4):e59. https://doi.org/10.1371/journal.pcbi.0030059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Csárdi G, Nepusz T (2006) The igraph software package for complex network research. Int J Complex Syst 1695(5):1–9

    Google Scholar 

  39. Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504. https://doi.org/10.1101/gr.1239303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bastian M, Heymann S, Jacomy M (2009) Gephi: an open source software for exploring and manipulating networks. https://doi.org/10.13140/2.1.1341.1520

    Book  Google Scholar 

  41. Hagberg A, Swart P, S Chult D (2008) Exploring network structure, dynamics, and function using NetworkX. Los Alamos National Lab (LANL), Los Alamos

    Google Scholar 

Download references

Acknowledgments

This research was funded by the National Science Foundation (IOS-2038872).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahid Mukhtar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hasan, M., Kumar, N., Majeed, A., Ahmad, A., Mukhtar, S. (2023). Protein–Protein Interaction Network Analysis Using NetworkX. In: Mukhtar, S. (eds) Protein-Protein Interactions. Methods in Molecular Biology, vol 2690. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3327-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3327-4_35

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3326-7

  • Online ISBN: 978-1-0716-3327-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation