Microfluidics-Enabled Isolation and Single-Cell Analysis of Circulating Tumor Cells

  • Protocol
  • First Online:
Single-Cell Assays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2689))

  • 597 Accesses

Abstract

Microfluidic platforms enable the enrichment and analysis of circulating tumor cells (CTCs), a potential biomarker for cancer diagnosis, prognosis, and theragnosis. Combined with immunocytochemistry/immunofluorescence (ICC/IF) assays for CTCs, microfluidics-enabled detection presents a unique opportunity to study tumor heterogeneity and predict treatment response, both of which can help cancer drug development. In this chapter, we detail the protocols and methods employed to fabricate and use a microfluidic device for the enrichment, detection, and analysis of single CTCs from the blood samples of sarcoma patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomas DW, Burns J, Audette J, Carroll A, Dow-Hygelund C, Hay M (2016) Clinical development success rates 2006–2015. BIO Industry Analysis 1(16):25

    Google Scholar 

  2. Kamb A, Wee S, Lengauer C (2007) Why is cancer drug discovery so difficult? Nat Rev Drug Discov 6(2):115–120. https://doi.org/10.1038/nrd2155

    Article  CAS  PubMed  Google Scholar 

  3. Longley D, Johnston P (2005) Molecular mechanisms of drug resistance. J Pathol 205(2):275–292. https://doi.org/10.1002/path.1706

    Article  CAS  PubMed  Google Scholar 

  4. Bithi SS, Vanapalli SA (2017) Microfluidic cell isolation technology for drug testing of single tumor cells and their clusters. Sci Rep 7(1):41707. https://doi.org/10.1038/srep41707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. van de Stolpe A, Pantel K, Sleijfer S, Terstappen LW, den Toonder JMJ (2011) Circulating tumor cell isolation and diagnostics: toward routine clinical use. Cancer Res 71(18):5955–5960. https://doi.org/10.1158/0008-5472.can-11-1254

    Article  PubMed  Google Scholar 

  6. Harouaka R, Kang Z, Zheng S-Y, Cao L (2014) Circulating tumor cells: advances in isolation and analysis, and challenges for clinical applications. Pharmacol Ther 141(2):209–221. https://doi.org/10.1016/j.pharmthera.2013.10.004

    Article  CAS  PubMed  Google Scholar 

  7. Wang H, Stoecklein NH, Lin PP, Gires O (2017) Circulating and disseminated tumor cells: diagnostic tools and therapeutic targets in motion. Oncotarget 8(1):1884–1912. https://doi.org/10.18632/oncotarget.12242

    Article  PubMed  Google Scholar 

  8. Parkinson DR, Dracopoli N, Petty BG, Compton C, Cristofanilli M, Deisseroth A, Hayes DF, Kapke G, Kumar P, Lee JSH, Liu MC, McCormack R, Mikulski S, Nagahara L, Pantel K, Pearson-White S, Punnoose EA, Roadcap LT, Schade AE, Scher HI, Sigman CC, Kelloff GJ (2012) Considerations in the development of circulating tumor cell technology for clinical use. J Transl Med 10(1):138. https://doi.org/10.1186/1479-5876-10-138

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chen K, Dopico P, Varillas J, Zhang J, George TJ, Fan ZH (2019) Integration of lateral filter arrays with immunoaffinity for circulating-tumor-cell isolation. Angew Chem Int Ed Engl 58(23):7606–7610. https://doi.org/10.1002/anie.201901412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen K, Amontree J, Varillas J, Zhang J, George TJ, Fan ZH (2020) Incorporation of lateral microfiltration with immunoaffinity for enhancing the capture efficiency of rare cells. Sci Rep 10(1):14210. https://doi.org/10.1038/s41598-020-71041-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Le M-CN, Chen D, Smith KA, Tran DD, Fan ZH (2021) Microfluidic isolation and release of triple-negative breast cancer cells in bone marrow. Proceedings of the 25th international conference on miniaturized systems for chemistry and life sciences (μTAS’2021), Palm Springs, CA, October 10–14, pp 631–632

    Google Scholar 

  12. Im K, Mareninov S, Diaz MFP, Yong WH (2019) An introduction to performing immunofluorescence staining. In: Yong WH (ed) Biobanking: methods and protocols. Springer, New York, pp 299–311. https://doi.org/10.1007/978-1-4939-8935-5_26

    Chapter  Google Scholar 

  13. Pomerantz AK, Sari-Sarraf F, Grove KJ, Pedro L, Rudewicz PJ, Fathman JW, Krucker T (2019) Enabling drug discovery and development through single-cell imaging. Expert Opin Drug Discovery 14(2):115–125. https://doi.org/10.1080/17460441.2019.1559147

    Article  CAS  Google Scholar 

  14. Dopico PJ, Le M-CN, Burgess B, Yang Z, Zhao Y, Wang Y, George TJ, Fan ZH (2022) Longitudinal study of circulating biomarkers in patients with resectable pancreatic ductal adenocarcinoma. Biosensors 12(4):206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fasanya HO, Dopico PJ, Yeager Z, Fan ZH, Siemann DW (2021) Using a combination of gangliosides and cell surface vimentin as surface biomarkers for isolating osteosarcoma cells in microfluidic devices. J Bone Oncol 28:100357. https://doi.org/10.1016/j.jbo.2021.100357

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lichtman JW, Conchello J-A (2005) Fluorescence microscopy. Nat Methods 2(12):910–919. https://doi.org/10.1038/nmeth817

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Beate Greer for assisting with the clinical aspect of this work and the patients for generously providing the samples. M.N.L. would like to acknowledge the support from the National Science Foundation Graduate Research Fellowship Program (DGE-1842473). This work has been supported in part by the National Institutes of Health (R01CA238387), the Florida Department of Health (23L05), and the University of Florida, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Hugh Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Le, MC.N., Smith, K.A., Alipanah, M., Chen, K., Lagmay, J.P., Fan, Z.H. (2023). Microfluidics-Enabled Isolation and Single-Cell Analysis of Circulating Tumor Cells. In: Li, P.C., Wu, A.R. (eds) Single-Cell Assays. Methods in Molecular Biology, vol 2689. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3323-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3323-6_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3322-9

  • Online ISBN: 978-1-0716-3323-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation